Rachael Hageman Blair

PhD

Rachael Hageman Blair

PhD

Rachael Hageman Blair

PhD

Research Topics

Mathematical biology; optimization; numerical analysis; inverse problems; statistics and scientific computing; methodology development for mathematical modeling and simulation of metabolic and genetic networks; data analysis including microarray and quantitative trait loci.

Contact Information

709 Kimball Tower

Buffalo NY, 14214

Phone: (716) 829-2814

Fax: (716) 829-2200

hageman@buffalo.edu

Loading...

Selected Publications

  • Griesenhober L, Hageman Blair R. (2014)  Evaluating performance of link prediction in scale-free evolving networks and a Facebook community.  Social Network Analysis and Mining 4(183).
  • Quinnes-Lombrana A, Ferguson D, Hageman Blair R, Kalabus JL, Redzematovic A, and Blanco JG (2014)  Individual variability in the cardiac expression of anthracycline reductases in donors with-and without-Down Syndrome.  Pharmaceutical Research (Epub ahead of print, PMID:  24562808).
  • Alkakna A, Choi S, Savage H, Hageman Blair R, Gu T, Svenson KL, Churchill Ga, Hibbs M, Korstaje R.  (2012) Pla2g2b and Phm are genes identified by mouse ENU mutagenesis that afect HDL cholestrol.  PLos One 7(8):e43139.
  • Hageman Blair R, Tritchler DL, Gaile DP. (2012) Mathematical and Statistical Modeling in Cancer Systems Biology. Frontiers in Physiology 3(227).
  • Hageman Blair R, Kliebenstein DJ, Churchill GA. (2012) What can causal networks tell us about metabolic pathways? PLoS Computational Biology 8(4): e10024258.
  • Leduc MS, Hageman Blair R, Tsaih SW, Verdugo RA, Walsh K, Churchill GA, Paigen B. (2012) Using bioinformatics and systems genetics to dissect HDL cholesterol genetics in an MRl/MpJ x SM/J intercross. The Journal of Lipid Research (53)6: 1163-1175.
  • Leduc, MS, Hageman, RS, Tsaih, SW, Verdugo, RA, Walsh, K., Churchill, GA., Paigen, B. (2011). Integration of QTL and bioinformatic tools to identify candidate genes for triglycerides in an MRL/MpJ x SM/J intercross. The Journal of Lipd Research 52:1672-1682..
  • Hageman, RS, Leduc, M, Paigen, B, Korstanje, R, and Churchill, GA. (2011). A Bayesian Framework for Inference of the Genotype-Phenotype Map for Segragating Populations. Genetics 187(4): 1163-1170.
  • Hageman, RS, Leduc, MS, Caputo, CR, Tsaih, SW, Paigen, B, Churchill, GA, and Korstanje, R. (2011). Uncovering Genes and Regulatory Pathways Related to Urinary Albumin Excretion in Mice. Journal of the American Society of Nephrology 22:73-81 (2011). (Selected by the Faculty of 1000 Biology).
  • Leduc, MS, Hageman, RS, Meng, Q, Verdugo, RA, Tsaih, SW, Churchill, GA, Paigen, B, Yuan, R. (2010). Genomic analysis identifies loci regulating IGF1 level and longevity. Aging Cell 9(5): 823-836.
  • Hageman, RS, Wagener, A, Hantschel, C, Svenson, KL, Churchill, GA, and Brockmann, GA. (2010). High fat diet leads to tissue specific changes reflecting risk factors for diseases in DBA/2J mice. Physiological Genomics 42:55-66.
  • *Calvetti, D,*Hageman, R, *Occhipinti, R, and *Somersalo, E. (2008) Dynamic Bayesian sensitivity analysis of a myocardial metabolic model. Mathematical Biosciences 212:1-21.
  • *Calvetti, D, Hageman, R, and *Somersalo, E. (2006). Large-scale Bayesian parameter estimation for a three-compartment cardiac metabolism model during ischemia. Inverse Problems 22:1797-1816.