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Abstract

Let Y1, Y2, · · · , YK denote the marker values for independent disease classes 1, 2, · · · , K.

Extended tree or umbrella ordering is defined as (Y1, · · · , YK1) � (YK1+1, · · · , YK) or

(Y1, · · · , YK1) � (YK1+1, · · · , YK) where K1 ≥ 1, K ≥ 2. In this paper, we consider

the problem of measuring diagnostic ability of a biomarker under extended tree or

umbrella ordering. Traditionally, researchers often first pool Y1, · · · , YK1 as one major

class and YK1+1, · · · , YK as another, and then estimate area under ROC curve (AUC)

in binary classification. The purpose of this paper is two-fold: 1) to investigate the

inappropriateness of AUC obtained by such polling strategy as a diagnostic measure; 2) to

propose a ROC framework for extended tree ordering (ETROC) and area under the curve

(ETAUC) as a diagnostic measure. The generalized inference (GI) and nonparametric

bootstrap (NB) methods are studied for confidence interval estimation of ETAUC.

Simulation studies are carried out to assess the performance of the proposed methods.

An ovarian cancer data set is analyzed using the proposed new measure ETAUC.
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1 Introduction

The receiver operating characteristic (ROC) curve, i.e.true positive rate (sensitivity)

against true negative rate (1-specificity), and its associated statistics such as area under

ROC curve (AUC) serve as the most popular tools in the field of diagnostic studies for the

purpose of marker evaluation under binary classification. The area under the ROC curve,

AUC, is the most widely used diagnostic measure. There exist many comprehensive

reviews regarding ROC curve and AUC (Pepe, 2003; Shapiro, 1999; Zhou et al., 2011;

Zou et al., 2011).

In practice, many diseases can be classified into multiple K (K > 2) classes. Let

Y1, Y2, · · · , YK be the marker values for independent disease classes 1, 2, · · · , K, respectively.

Without loss of generality, assume higher value indicates worse condition. There exist

many possible orderings for Y1, Y2, · · · , YK among which simple ordering (Y1 � Y2 · · · �

YK) and tree or umbrella ordering (Y1 � (Y2, Y3, · · · , YK) or Y1 � (Y2, Y3, · · · , YK))

are most widely studied in statistical literature. Note that “�” means “stochastically

smaller” and there do not exists clearly defined orderings among the variables placed

inside a parenthesis. Simple ordering often occurs in cancer and Alzheimer’s disease

diagnosis, e.g. the diagnosis result could be healthy, early diseased and fully diseased.

(Cramer et al., 2011; Leichtle et al., 2013; Morris et al., 2001; Partheen et al., 2011; Scinto

and Daffner, 2000). There exist many statistical literatures on the inference about the

diagnostic measures under simple ordering (Alonzo et al., 2009; Dong et al., 2017; Li

and Fine, 2008; Li et al., 2012; Mossman, 1999; Nakas et al., 2010, 2013; Nakas and

Yiannoutsos, 2004; Sampat et al., 2009; Scurfield, 1996, 1998; Tian et al., 2011; Xiong

et al., 2006, 2007; Youden, 1950; Zhang and Li, 2011).

Besides simple ordering, tree and umbrella ordering also have important clinical

applications, especially in molecular diagnostics of cancer subtypes. Take lymphomas

diagnosis as an example. Lymphomas are a group of hematological malignancies that are

derived from lymphocytes and occur predominantly in lymph nodes or other lymphoid

structures. Non-Hodgkin lymphomas (NHL) is one of the major categories of lymphomas
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and B-cell lymphoma accounts for about 90% of NHL. Subtypes of B-cell lymphoma

include diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, primary mediastinal

large B-cell lymphoma (PMBL), Burkitt lymphoma and etc. One of the immunohistochemical

biomarkers that are of diagnostic value for B-cell lymphomas is BCL6 (Sun et al.,

2016). For evaluating the diagnostic accuracy of BCL6, the classification problem of

distinguishing B-cell lymphoma vs. healthy class falls in the framework of tree or umbrella

ordering. As another example, lung cancer is classified as non-small cell lung cancer

(NSCLC) and small cell lung cancer (SCLC) based on immunohistological morphology

and tumor cell histological, and NSCLC consists of three subtypes (adenocarcinoma,

squamous-cell carcinoma, and large cell carcinoma) among which there are no clearly

defined orderings. As a result, discriminating NSCLC from healthy class or from SCLC

involves tree or umbrella ordering. There exist some research about diagnostic measures

under tree or umbrella ordering, e.g. the umbrella volume (UV ) proposed by Nakas

and Alonzo (Nakas and Alonzo, 2007). Most recently, Wang et al. (Wang et al., 2016)

proposed a TROC (ROC for tree-ordering) framework for K-class tree ordering and the

area under TROC curve (TAUC) as an appropriate diagnostic measure.

Besides simple ordering and tree (or umbrella) ordering, some scenarios often encountered

in practice are (Y1, Y2, · · · , YK1) � (YK1+1, · · · , YK) or (Y1, Y2, · · · , YK1) � (YK1+1, · · · , YK)

where K1 > 1 and K−K1 > 1. For example, a recent ovarian cancer study (Cramer et al.,

2011) collected data on healthy controls, benign disease cases, early stage, and late stage

ovarian cancer patients. To evaluate the performance of biomarkers for distinguishing

between non-cancer and ovarian cancer, Cramer et al. (Cramer et al., 2011) estimated

AUCs based on the pooled control group (healthy controls and benign disease cases)

and the pooled diseased group (early and late ovarian cancer cases). More details

about ovarian cancer data set will be presented in Section 2. As another example,

in a recent study of prostate cancer, Chadha et al. (Chadha et al., 2014) estimated

AUCs of biomarkers by pooling all healthy and benign subjects as the control group,

and all primary and metastatic subjects as the diseased group. In both examples,
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the control group consists of two classes (healthy control and benign disease cases) as

well as the diseased group (early stage and late stage), and researchers were interested

in evaluating the diagnostic accuracy of biomarkers for separating the control group

(non-cancer) from the diseased group (cancer). Both examples target the classification

under (Y1, Y2) � (Y3, Y4) where Y1, Y2, Y3, and Y4 denote the marker values for healthy

control, benign disease group, early stage and late stage, respectively. Such pooling

strategy used by both of aforementioned studies (Chadha et al., 2014; Cramer et al., 2011)

is a common practice for the purpose of evaluating the diagnostic ability of biomarkers

when both healthy group and diseased group involved multiple subtypes. However, little

has been done on checking the appropriateness and implication of such pooling approach

for the intended purpose.

Henceforth in this paper, we refer ordering (Y1, Y2, · · · , YK1) � (YK1+1, · · · , YK) or

(Y1, Y2, · · · , YK1) � (YK1+1, · · · , YK) where K1 ≥ 1 and K − K1 ≥ 1. Note that as

K1 = 1 and K = K1 + 1, extended tree or umbrella ordering becomes tree or umbrella

ordering, respectively. As K1 = 1 and K = 2, extended tree or umbrella ordering becomes

the traditional binary classification. We will focus on extended tree ordering as extended

umbrella ordering can be handled similarly.

The purpose of this paper is two-fold: 1) to investigate the consequences of pooling

strategy on biomarker evaluation; 2) to present a new diagnostic accuracy measure under

extended tree or umbrella ordering. The rest of paper is organized as follows. In Section

2, using the example of ovarian cancer (Cramer et al., 2011), we demonstrate AUC based

on pooling strategy is not an appropriate measure for extended tree ordering. In Section

3, an ROC framework for extended tree ordering, namely ETROC, is introduced and

the area under the ETROC curve, namely ETAUC, is proposed. Section 4 presents

both parametric and nonparametric approaches for the confidence interval estimations

of ETAUC. In Section 5, a simulation study is conducted to assess and compare the

performance of the proposed methods. Section 6 analyzes an ovarian cancer data set.

Section 7 gives summary and discussion.
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2 Motivation

Ovarian cancer is the 5th leading cause of cancer death among women in developed

countries (Chudecka-G laz, 2015). It generally presents in advanced stages with high case

fatality ratio (CFR) but has favorable survival if diagnosed earlier. However, clinical

symptoms are not well manifested in early stages of the disease, resulting in late diagnosis

and poor prognosis. The Prostate, Lung, Colorectal and Ovarian (PLCO) (Cramer et al.,

2011) cancer study is a randomized trial evaluating the effect of screening on cancer

mortality. Women assigned to the ovarian screening arm received annual transvaginal

ultrasound and CA125 testing. Serum samples were also collected and banked for

scientific study. Four sites initiated a phase II study under the early detection research

network using the pre-saved samples which included 480 healthy controls, 160 benign

cases, 75 early stage cases, and 82 late stage cases. This data set can be downloaded

from public portal at https://edrn.nci.nih.gov, and the results have been published by

many researchers (Cramer et al., 2011; Zhu et al., 2011). To evaluate the performance

of selected ovarian cancer biomarkers for distinguishng between non-cancer cases and

cancer cases, Cramer et al. (Cramer et al., 2011) pooled all the benign disease cases

and general population controls into a pooled control group, and all the early and late

ovarian cancer cases into a pooled diseased group; and estimated AUCs based on binary

classification; i.e. control group vs. cancer group. The descriptive statistics for 13

biomarkers including two well studied biomarkers for ovarian cancer, i.e. cancer antigen

125 (CA125) and human epididymis protein 4 (HE4), are presented in Table 1 along with

estimated AUCs and ranks.

While such pooling strategies are often used in research, the validity and implication

of pooling in biomarker evaluation have never been carefully inspected. In the following,

we will examine these aspects closely. We will use the setting of the ovarian cancer data

set as an example. Let Y1, Y2, Y3 and Y4 denote the variables for marker values for

healthy, benign, early stage, and late stage groups respectively. Let Y12 stand for the

variable for the pooled control group, i.e. Y12 ∼ fY12(y) = w1|12fY1(y) + (1− w1|12)fY2(y)
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Table 1. Summary statistics and AUCs for 13 biomarkers for ovarian cancer data set.

Estimated AUC is obtained under binary classification: pooled noncancer group

(healthy control and benign cases) vs pooled cancer (early and late stage cancer cases)

(Cramer et al., 2011).

Biomarkers

Mean Standard Deviation AUC

Healthy controls Benign Early Late Healthy controls Benign Early Late (Rank)

CA125 29.71 39.65 565.63 1556.41 136.29 73.57 2549.78 3740.10 0.911 (1)

CA153 17.77 21.10 38.47 147.35 11.13 25.45 56.04 299.66 0.732 (5)

CA199 16.96 31.92 161.82 37.82 31.50 139.69 553.99 106.78 0.603 (12)

KLK6 3.73 3.66 4.21 9.99 1.45 1.22 2.62 10.09 0.710 (8)

CA724 2.29 2.05 37.40 39.74 3.70 2.59 148.76 84.35 0.752 (4)

DD.O110 129.11 137.86 481.12 1033.12 127.93 283.46 979.62 1267.45 0.680 (9)

DD.C248 0.62 0.66 0.60 0.75 0.76 0.83 0.48 0.54 0.588 (13)

DD.P108 38.23 39.68 47.24 69.03 23.78 25.11 23.57 38.45 0.720 (6)

DD.X065 0.63 0.81 1.09 1.64 0.76 1.24 1.81 1.95 0.616 (11)

HE4 61.04 72.07 185.24 496.20 69.56 105.47 253.23 347.50 0.857 (2)

SMRP 0.86 0.94 0.97 4.46 0.81 1.38 0.76 7.41 0.679 (10)

YKL40 82.87 103.13 121.25 205.86 65.22 71.77 100.14 117.97 0.720 (6)

IGF2 1919.53 1852.88 1642.18 1208.97 441.74 488.05 417.98 456.66 0.785 (3)
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Table 2. Scenarios of random sampling based on the ovarian cancer data set.

Scenario w1|12 w3|34 (n1, n2, n3, n4)

1 0.5 0.5 (100,100,50,50)

2 0.5 0.25 (100,100,25,75)

3 0.5 0.75 (100,100,75,25)

4 0.25 0.5 (50,150,50,50)

5 0.25 0.25 (50,150,25,75)

6 0.25 0.75 (50,150,75,25)

7 0.75 0.5 (150,50,50,50)

8 0.75 0.25 (150,50,25,75)

9 0.75 0.75 (150,50,75,25)

where w1|12 is the relative weight for healthy controls out of the pooled control group.

Similarly, Y34 stands for the variable for the pooled cancer group, i.e. Y34 ∼ fY34(y) =

w3|34fY3(y) + (1 − w3|34)fY4(y) where w3|34 is the relative weight for early stage ones

out of the pooled cancer group. For the purpose of evaluating the diagnostic ability

of distinguishing cancer from non-cancer cases, Cramer et al. (Cramer et al., 2011)

estimated AUCs for biomarkers as binary classification under Y12 � Y34, as presented

in Table 1. In this paper we refer to such obtained AUCs (based on pooling) as naive

AUCs (NAUCs) for the reasons which will be given in the following.

It is obvious that NAUC depends on the relative weight w1|12 and w3|34 since the

distributions of Y12 and Y34 depend on w1|12 and w3|34 respectively. To further demonstrate

this point clearly, we assume Yk’s (k = 1, 2, 3, 4) follow exponential distributions with

mean value of 1/λk. Given w1|12 and w3|34, the NAUC for Y12 � Y34 can be obtained as

NAUC = 1−w1|12[
λ3w3|34

λ1 + λ3

+
λ4(1− w3|34)

λ1 + λ4

]− (1−w1|12)[
λ3w3|34

λ2 + λ3

+
λ4(1− w3|34)

λ2 + λ4

]. (1)

Given λ1, λ2, λ3, λ4, NAUC is directly related to w1|12 and w3|34. Hence NAUC is not

an appropriate diagnostic measure as NAUC should only be reported accompanied by

both w1|12 and w3|34, and two NAUCs are only comparable when both w1|12 and w3|34

are the same for two biomarkers under comparison.

To further demonstrate the effect of relative prevalences w1|12 and w3|34 on NAUC, we
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will conduct a random sampling study based on the original ovarian data set presented

in Table 1. Let n1, n2, n3 and n4 stand for the sample sizes for healthy, benign, early and

late cases respectively. Subjects are randomly selected from the original data set in each

group. The sampling strategies are listed in Table 2. There are three settings for each of

w1|12 and w3|34 yielding a total of nine scenarios for (w1|12, w3|34). The estimated NAUC

for each biomarker based on 1000 rounds of repetitions along with their corresponding

ranks under each scenario are presented in Table 3. It is shown that the estimated

NAUCs as well as the rankings for some biomakers could change dramatically among

different settings of w1|12 and w3|34. For examples, in terms of estimated NAUC, CA72.4

ranges from 0.689 to 0.806, and HE4 ranges from 0.771 to 0.909; in terms of the ranking,

CA19.9 ranges from 7 to 13, and YKL40 from 6 to 10 under different settings of w1|12

and w3|34. This random sampling study clearly demonstrates that NAUC is not an

appropriate measure for biomarker evaluation.

3 The ROC curve for extended tree orderings (ETROC)

and the area under ETROC (ETAUC)

This section aims to present an appropriate diagnostic measure for extended tree ordering

defined as (Y1, Y2, · · · , YK1) � (YK1+1, · · · , YK). The classification under extended tree

ordering generally involve two major classes each of which contains several subtypes.

Without loss of generality, assume higher response indicate worse condition and marker

values are measured on a continuous scale. DenoteK1 (K1 ≥ 1) as the number of subtypes

for the first class, and let Y1, Y2, · · · , YK1 denote the marker values for independent

subtypes 1, 2, · · · , K1. Denote K2 (K2 ≥ 1) as the number of subtypes for the second class

and let YK1+1, · · · , YK denote the marker values for independent subtypes K1 + 1, · · · , K.

Note K1 + K2 = K. Note that the case K1 = 1 and K2 = 1 corresponds to binary

classification. When K1 = 1 and K2 ≥ 2, extended tree ordering becomes tree ordering

which was studied by Wang et al. (Wang et al., 2016).
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Define two random variables asX = max(Y1, Y2, · · · , YK1) and Z = min(YK1+1, YK1+2, · · · , YK).

The cumulative distribution function of X and Z can be written as

FX(x) = P (X < x) =

K1∏
i=1

P (Yi < x) =

K1∏
i=1

Fi(x), (2)

FZ(z) = P (Z < z) = 1−
K∏

j=K1+1

P (Yj ≥ z) = 1−
K∏

j=K1+1

(1− Fj(z)). (3)

At a given cut-point c, define extended tree sensitivity (ETSe) as

ETSe(c) = P (Z > c) = P (min(YK1+1, · · · , YK) > c) =
K∏

j=K1+1

(1− Fj(c)), (4)

and extended tree specificity (ETSp) as

ETSp(c) = P (X ≤ c) = P (max(Y1, Y2, · · · , YK1) ≤ c) =

K1∏
i=1

Fi(c). (5)

For c ∈ (−∞,+∞), the ROC curve under extended tree ordering (ETROC) can be

defined as:

ETROC(F1, · · · , FK1 , · · · , FK) = (1− ETSp(c), ETSe(c)). (6)

It can be shown that the area under ETROC (denoted as ETAUC) equals to the

probability that any randomly chosen subject from the first major class (1, · · · , K1)

has lower marker value than that of any of the randomly chosen subject from the second
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major class (K1 + 1, · · · , K). The details are as follows.

ETAUC =

∫ 1

0

ETSe d(1− ETSp)

=

∫ +∞

−∞

K∏
j=K1+1

(1− Fj(c))d
K1∏
i=1

Fi(c)

=

K1∑
p=1

∫ +∞

−∞

K∏
j=K1+1

(1− Fj(c))
K1∏

i=1,i 6=p

Fi(c)fp(c)dc

=

K1∑
p=1

EYp [
K∏

j=K1+1

P (Yj > c|Yp = c)

K1∏
i=1,i 6=p

P (Yi < c|Yp = c)]

=

K1∑
p=1

EYp [P (Z > c|Yp = c)P (X ≤ c|Yp = c)]

= P (X < Z)

= P (max(Y1, · · · , YK1) < min(YK1+1, · · · , YK)).

(7)

It is well known that for binary classification, the chance line for ROC curve is

the diagonal line. For the extended tree ordering under consideration, a chance curve

corresponds to the scenario that the marker under consideration has no discriminatory

ability at all, i.e. the distributions of Y1, · · · , YK1 , YK1+1, · · · , YK completely overlap. It

is easy to show that the chance curve is

Y = (1− (1−X)(1/K1))K−K1 , (8)

where Y stands for ETSe and X stands for 1 − ETSp. Note that when K1 = 1 and

K = 2 (i.e. binary classfication), the chance curve becomes the diagonal line.

The minimum of ETAUC, i.e. the area under the chance curve, can be obtained as:

ETAUCmin =
Γ(K1 + 1)Γ(K −K1 + 1)

Γ(K + 1)
, (9)

where Γ(.) is the gamma function. Note that when K1 = 1 and K = 2 (i.e. binary

classfication), ETAUCmin = 1/2. If the marker under consideration can perfectly

distinguish two major classes, ETAUC reaches its maximum 1.

11



As an example, let Y1 ∼ N(0, 1), Y2 ∼ N(0.5, 1), Y3 ∼ N(1, 1), Y4 ∼ N(3, 1), Y5 ∼

N(3.5, 1), Y6 ∼ N(4, 1). Figure 1 displays several ETROC curves along with their

corresponding chance curves for the scenarios: (Y1, Y2) � (Y5, Y6)(red), (Y1, Y2) � (Y4, Y5, Y6)(green),

(Y1, Y2, Y3) � (Y5, Y6)(blue), and (Y1, Y2, Y3) � (Y4, Y5, Y6)(orange).

Compared to the Naive AUC (NAUC), one of the major advantages of the proposed

ETAUC is that ETAUC is independent of the relative frequency of subtypes in each

major group. Using the same settings of the exponential example in Section 2, i.e.

(Y1, Y2) � (Y3, Y4) and Yk’s (k = 1, 2, 3, 4) follow exponential distributions with mean

value of 1/λk, ETAUC can be easily obtained as

ETAUC =
λ1

λ1 + λ3 + λ4

+
λ2

λ2 + λ3 + λ4

− λ1 + λ2

λ1 + λ2 + λ3 + λ4

. (10)

Clearly, ETAUC is a function of only λ1, λ2 and λ3, and is independent of both of

w1|12 and w3|34. As stated above, ETAUC is scaleless and has a well-defined probability

interpretation. Therefore, ETAUC can be a very useful diagnostic measure for biomarkers

under extended tree ordering.

4 Confidence interval estimation of ETAUC

In this section, a parametric approach, i.e. generalized inference based on the concept

of generalized pivotal quantity, as well as a nonparametric approach are proposed to

construct the confidence interval estimation of ETAUC. Section 4.2 and 4.2 presents

generalized inference methods with and without normality, respectively. Section 4.3

presents the nonparametric method.

4.1 The generalized inference (GI) method: Under Normality

Since the concepts of generalized variables and generalized pivots were introduced (Tsui

and Weerahandi, 1989; Weerahandi, 1995), the generalized inference (GI)method has

proved to be fruitful for providing finite sample solutions to a variety of problems for which

12



traditional exact statistical methods do not exist (Dong et al., 2011; Krishnamoorthy

et al., 2009; Krishnamoorthy and Mathew, 2003; Lai et al., 2012; Li et al., 2008; Lin

et al., 2007; Tian and Cappelleri, 2004; Weerahandi, 2004; Yin and Tian, 2014a,b). The

advantage of GI is that it typically has good performance even at small sample sizes as

it is an exact test. The detailed discussion could be found in the book by Weerahandi

(Weerahandi, 2013).

Suppose K independent groups follow the extended tree ordering, i.e. (Y1, · · · , YK1) �

(YK1+1, · · · , YK) and Yk ∼ N(µk, σ
2
k) where k = 1, · · · , K1, · · · , K. Under normality,

ETAUC in (7) can be calculated as the following:

ETAUC =

K1∑
p=1

∫ +∞

−∞

K∏
j=K1+1

Φ(−ajc+ bj)

K1∏
i=1,i 6=p

Φ(mic− ni)φ(c)dc, (11)

where aj = σ1
σj

, mi = σ1
σi

, bj =
µj−µ1
σj

, and ni = µi−µ1
σi

.

The generalized pivotal quantities for normal means and variances are well-known as

Rσ2
k

=
(n− 1)S2

k

Vk
, (12)

Rµk = ȳk − Zk

√
Rσ2

k

nk
, (13)

where Vk =
(nk−1)S2

k

σ2
k

∼ χ2
n−1 and Zk =

√
n(Ȳk−µk)
σk

∼ N(0, 1) for k = 1, 2, . . . , K. The

generalized pivotal quantity for ETAUC can be easily written out as

RETAUC =

K1∑
p=1

∫ +∞

−∞

K∏
j=K1+1

Φ(−Rajc+Rbj)

K1∏
i=1,i 6=p

Φ(Rmic−Rni)φ(c)dc, (14)

where Raj =
Rσ1
Rσj

, Rmi =
Rσ1
Rσi

, Rbj =
Rµj−Rµ1

Rσj
, and Rni =

Rµi−Rµ1
Rσi

. One can easily show

that RETAUC satisfies the two following conditions to be a bona fide generalized pivotal

quantity: 1) the distribution of RETAUC is independent of any unknown parameters;

and 2) the observed value of RETAUC equals to ETAUC for given ȳk and S2
k for (k =

1, · · · , K1, · · · , K).

Given a specific data set Ykj’s where k = 1, · · · , K1, · · · , K, and j = 1, 2, . . . , nk,

the generalized confidence interval for ETAUC can be obtained via the following steps:

13



i) Calculate µ̂k and σ̂2
k for k = 1, · · · , K1, · · · , K; ii) Generate Vk from χ2

nk−1 and Zk

from standard normal distribution N(0, 1), then obtain Rσ2
k

and Rµk following (12) and

(13); iii) Compute RETAUC following (14); iv) Repeat first three steps for a total of

R = 2000 times to obtain a set of RETAUC ’s values; v) Arrange the set of RETAUC ’s

from small to large values. Denote RETAUC(α) as the 100αth percentile of RETAUC ’s.

Therefore (RETAUC(α/2), RETAUC(1−α/2)) is a two-sided 100(1−α)% confidence interval

of ETAUC.

4.2 Generalized inference (GI): Without normality

In practice, it is common that the normality of the data is not satisfied. For such

scenarios, Box-Cox transformation (Box and Cox, 1964) could be applied to achieve

normality due to the fact that ETAUC is invariant under monotonic transformation.

This type of approach is widely used in ROC analysis for a variety of problems (Faraggi

and Reiser, 2002; Fluss et al., 2005; Molodianovitch et al., 2006; Schisterman et al., 2004;

Zou and Hall, 2000).

For the ith (i = 1, . . . , nk) subject in the kth group (k = 1, · · · , K1, K1 + 1 · · · , K), a

power transformation of the Box-Cox type is suggested as:

Y
(λ)
ki =


Y λki−1

λ
λ 6= 0

log(Yki) λ = 0
,

where it is assumed that Y λ
ki ∼ N(µk, σ

2
k). The likelihood function based on all the

observations from K groups is:

K∑
k

nk∑
i

[−1

2
log(2πσ2

k)−
(Y λ

ki − µk)2

2σ2
k

+ (λ− 1)logYki)]. (15)

We can obtain the MLE of λ, µk and σk by maximizing the function in (15). The proposed

generalized inference approach in Section 4.1 can be implemented using the transformed

data.

14



4.3 Nonparametric bootstrap (NB) method

The parametric approaches are only appropriate when the normality assumption of either

original data or the transformed data is not violated. However, the normality is not

always achievable. Therefore, it is necessary to provide a non-parametric approach to

estimate the confidence interval of ETAUC.

Given an observed data set Ykj’s where k = 1, · · · , K1, · · · , K, and j = 1, 2, . . . , nk,

the empirical estimate of ETAUC can be calculated as following

̂ETAUCNB =
1∏K

k=1 nk

n1∑
v1=1

· · ·
nK∑
vK=1

I(max(Y1v1 , · · · , YK1vK1
) < min(YK1+1vK1+1

, · · · , YKvK )).(16)

The nonparametric bootstrap confidence interval for ETAUC can be obtained via the

following steps: 1) For kth group (k = 1, 2, . . . , K), resample with replacements nk

observations from yk1, yk2, . . . , yknk ; 2) Obtain ̂ETAUC using the bootstrap samples

following (16); 3) Repeat first two steps for a total of R=1000 times to get a set of

̂ETAUCNB; 4) Array the set ̂ETAUCNB from small to large values. Define ̂ETAUCNB(α)

as the 100αth percentile of nonparametric bootstrap samples of ETAUC’s. A two-sided

100(1−α)% nonparametric bootstrap confidence interval estimate of ETAUC is ( ̂ETAUCNB(α/2),

̂ETAUCNB(1− α/2)).

5 Simulation studies

Simulation studies were conducted to assess and compare the performance of proposed

confidence interval estimation by generalized inference (GI) and nonparametric bootstrap

(NB) methods for ETAUC. A variety of scenarios are considered under a several

sample sizes settings. As (K1, K) = (2, 4), the sample size settings are: (n1, n2, n3, n4) =

(15, 15, 15, 15), (30, 30, 30, 30), (50, 50, 50, 50), (75, 75, 75, 75), (100, 100, 100, 100), (20, 30, 20, 20);

and as (K1, K) = (2, 5), the sample size settings are: (n1, n2, n3, n4, n5) = (15, 15, 15, 15, 15), (30, 30, 30, 30, 30), (50, 50, 50, 50, 50), (75, 75, 75, 75, 75), (100, 100, 100, 100, 100), (20, 30, 20, 25, 30).

For each setting, 2000 independent random samples are generated and the coverage

probability (CP ) is calculated by the proportion of cases that 95% estimated confidence

15



intervals contained the true value of ETAUC. LT and UT in Table 4-7 stand for the

proportion that the true value of ETAUC falls below the lower confidence bound and

above the upper confidence bound, respectively. The average of estimated interval length

is denoted as MIL in the tables.

Tables 4 and 5 presented simulation results under normal distributions for (K1, K) =

(2, 4) and (K1, K) = (2, 5) respectively, and Tables 6 and 7 under gamma distributions

for (K1, K) = (2, 4) and (K1, K) = (2, 5) respectively. All four tables show that when

ETAUC gets larger, especially when it is greater than 0.8, the NB method does not

perform as well as the GI method at small sample sizes; however, when sample sizes get

larger, NB method produces satisfactory coverage probabilities for most scenarios. The

GI method generally maintains the nominal level for all the parameter settings, despite

the sample sizes. In terms of LT and UT , GI usually has heavier proportion of true

value falling above the upper confidence bound whereas NB method has more balanced

LT and UT when ETAUC is small. Furthermore, NB has wider confidence intervals

compared to GI method when ETAUC is small and the observation is reversed when

ETAUC is large.

In summary, when the normality is satisfied, theGI method would be a good choice for

confidence interval estimation. When the normality assumptions could not be achieved

even with Box-Cox transformation and the sample sizes are not small, the NB method

could be applied.

6 Real data analyses

In this section, we reanalyzed the ovarian cancer data set presented in Section 2 (Cramer

et al., 2011).

This data set contains four classes: 480 healthy controls, 160 benign cases, 75 early

stage cases, and 82 late stage cases. One of the research aims was to evaluate biomarkers’

diagnostic accuracy for distinguishing between cancer and non-cancer cancers and rank
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these biomarkers accordingly. As reviewed in Section 2, Cramer et al. (Cramer et al.,

2011) estimated traditional AUCs based on pooled data. For the research interest in

this paper, this data set falls into the framework of extended tree ordering with K1 = 2,

and K = 4. In this section, we will evaluate the biomarkers using the newly proposed

diagnostic measure (ETAUC) for extended tree ordering.

Table 8. Estimated ETAUCs, corresponding ranking and 95% confidence intervals of

the biomarlers in ovarian cancer data set.

Biomarkers
Estimated

Rank
95% CI

ETAUC LB UB

CA125 0.705 1 0.634 0.774

CA153 0.401 4 0.325 0.482

CA199 0.243 12 0.187 0.304

KLK6 0.363 6 0.300 0.438

CA724 0.283 10 0.193 0.379

DD.O110 0.325 8 0.256 0.398

DD.C248 0.233 13 0.182 0.291

DD.P108 0.380 5 0.314 0.451

DD.X065 0.257 11 0.196 0.317

HE4 0.586 2 0.502 0.668

SMRP 0.308 9 0.240 0.381

YKL40 0.350 7 0.283 0.423

IGF2 0.458 3 0.385 0.525

LB, lower bound of the 95% confidence interval; UB, upper bound of the 95% confidence interval.

The Shapiro-Wilk test was applied to check normality for the biomarkers under

each group, and it was found that none of 13 biomarkers satisfies normality before

or after Box-Cox transformation. Table 8 presents the estimated ETAUC with the

corresponding ranking and 95% nonparametric confidence intervals. Compared with

Table 1, for majority of biomarkers, discrepancies between rankings of based on estimated

ETAUC and NAUC are observed. For example, based on estimated ETAUC, we

observe KLK6 > YKL40, and CA15.3 > CA72.4 where “>” means “better”, while these

relationships are reversed by estimated NAUC in Table 1.

Furthermore, to investigate the magnitude of sampling error for ETAUC, we performed
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the similar random sampling study for ETAUC using the settings listed in Table 2. Table

9 presents the estimated ETAUC based on 1000 rounds of repetitions along with the

corresponding ranking. Unlike the results of NAUC in Table 3, the estimated ETAUCs

for all biomarkers barely change across sampling scenarios and they are very close to

the estimates in Table 8. It is notable that all ranks remain the same across sampling

scenarios, as expected. These observations demonstrate that ETAUC under extended

tree ordering could be used as an appropriate diagnostic measure while NAUC could

lead to misleading results.

7 Conclusion

Extended tree or umbrella ordering often occurs in the field of cancer research when both

healthy group and diseased group involve multiple sub-classes. As a standard practice,

researchers often treat the problem of biomarker evaluation as binary classification by

pooling all the sub-classes within each group to create two major classes and estimated

the traditional area under ROC curve as a diagnostic measure.

This paper investigates the consequences and implication of such pooling approach

and demonstrated that such derived AUC based on pooling depends on the relative

sampling weights of sub-classes and hence is not convenient to use as a meaningful

diagnostic measure.

Therefore, we present an appropriate diagnostic measure, i.e. area under ROC curve

for extended tree ordering (ETAUC). ETAUC is independent of the relative frequency

of sub-classes in each group, and also has a well-defined probability interpretation. Note

that when each group only contains one class, ETAUC just becomes the traditional

AUC for binary classification.

An R program is available from Dr. Lili Tian at ltian@buffalo.edu.
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Figure 1: ETROC curves (solid lines) and the corresponding chance curves (dash-dot

lines, same color) of X � Z for a variety of cases where

Y1 ∼ N(0, 1), Y2 ∼ N(0.5, 1), Y3 ∼ N(1, 1), Y4 ∼ N(3, 1), Y5 ∼ N(3.5, 1), Y6 ∼ N(4, 1).
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Table 4. Estimated coverage probabilities for 95% confidence intervals for ETAUC

under (Y1, Y2) � (Y3, Y4) with normal distribution settings based on 2000 simulations.

(Y1, Y2) � (Y3, Y4)

GI NB GI NB GI NB GI NB

Sample size CP LT UT MIL

Y1 ∼ N(0, 1);Y2 ∼ N(0.3, 1);Y3 ∼ N(1, 1);Y4 ∼ N(1.3, 1); ETAUC = 0.4545

(15,15,15,15) 0.961 0.944 0.008 0.028 0.031 0.029 0.370 0.381

(30,30,30,30) 0.959 0.955 0.013 0.024 0.029 0.022 0.260 0.268

(50,50,50,50) 0.956 0.948 0.015 0.028 0.029 0.025 0.201 0.208

(75,75,75,75) 0.952 0.955 0.013 0.022 0.035 0.024 0.164 0.169

(100,100,100,100) 0.957 0.950 0.011 0.019 0.033 0.032 0.142 0.146

(20,30,20,20) 0.951 0.942 0.010 0.030 0.040 0.029 0.291 0.299

Y1 ∼ N(0, 1);Y2 ∼ N(0.5, 1.1);Y3 ∼ N(2, 1.2);Y4 ∼ N(3, 1.3); ETAUC = 0.7258

(15,15,15,15) 0.959 0.938 0.005 0.050 0.036 0.013 0.366 0.347

(30,30,30,30) 0.959 0.940 0.006 0.041 0.036 0.020 0.249 0.246

(50,50,50,50) 0.957 0.955 0.011 0.027 0.033 0.018 0.190 0.191

(75,75,75,75) 0.946 0.952 0.015 0.030 0.040 0.019 0.154 0.156

(100,100,100,100) 0.952 0.950 0.012 0.027 0.037 0.024 0.133 0.135

(20,30,20,20) 0.954 0.930 0.005 0.048 0.041 0.022 0.285 0.277

Y1 ∼ N(0, 1);Y2 ∼ N(1, 1);Y3 ∼ N(3, 1.2);Y4 ∼ N(4, 1.4); ETAUC = 0.8551

(15,15,15,15) 0.947 0.919 0.004 0.075 0.050 0.007 0.302 0.257

(30,30,30,30) 0.952 0.938 0.006 0.049 0.043 0.014 0.196 0.184

(50,50,50,50) 0.955 0.943 0.010 0.043 0.036 0.015 0.146 0.143

(75,75,75,75) 0.946 0.952 0.014 0.033 0.041 0.016 0.118 0.118

(100,100,100,100) 0.948 0.949 0.011 0.031 0.041 0.020 0.101 0.102

(20,30,20,20) 0.951 0.922 0.004 0.065 0.046 0.014 0.225 0.204

CP: coverage probability; LT: one side coverage probability (lower tail); UT: one side coverage

probability (upper tail); MIL:mean of the interval lengths.
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Table 5. Estimated coverage probabilities for 95% confidence intervals for ETAUC

under (Y1, Y2) � (Y3, Y4, Y5) with normal distribution settings based on 2000

simulations.

(Y1, Y2) � (Y3, Y4, Y5)

GI NB GI NB GI NB GI NB

Sample size CP LT UT MIL

Y1 ∼ N(0, 1);Y2 ∼ N(0.5, 1);Y3 ∼ N(1, 1);Y4 ∼ N(1.5, 1);Y5 ∼ N(1.6, 1); ETAUC = 0.3781

(15,15,15,15,15) 0.956 0.950 0.006 0.024 0.039 0.026 0.340 0.357

(30,30,30,30,30) 0.953 0.956 0.012 0.021 0.036 0.024 0.240 0.252

(50,50,50,50,50) 0.954 0.951 0.011 0.021 0.035 0.028 0.186 0.195

(75,75,75,75,75) 0.954 0.958 0.013 0.018 0.034 0.024 0.152 0.159

(100,100,100,100,100) 0.952 0.947 0.014 0.022 0.035 0.031 0.132 0.138

(20,30,20,25,30) 0.949 0.945 0.011 0.025 0.041 0.030 0.266 0.278

Y ∼ 1 N(0, 1);Y2 ∼ N(0.5, 1);Y3 ∼ N(2, 1.1);Y4 ∼ N(2.5, 1.2);Y5 ∼ N(3, 1.3); ETAUC = 0.6822

(15,15,15,15,15) 0.943 0.943 0.004 0.041 0.054 0.017 0.376 0.360

(30,30,30,30,30) 0.951 0.946 0.006 0.036 0.044 0.019 0.257 0.255

(50,50,50,50,50) 0.952 0.956 0.007 0.029 0.042 0.016 0.196 0.198

(75,75,75,75,75) 0.947 0.950 0.011 0.028 0.043 0.023 0.159 0.162

(100,100,100,100,100) 0.950 0.950 0.010 0.029 0.041 0.021 0.137 0.140

(20,30,20,25,30) 0.946 0.935 0.003 0.043 0.052 0.023 0.289 0.284

Y1 ∼ N(0, 1);Y2 ∼ N(1, 1.1);Y3 ∼ N(3, 1.2);Y4 ∼ N(4, 1.3);Y5 ∼ N(5, 1.4); ETAUC = 0.8437

(15,15,15,15,15) 0.942 0.920 0.004 0.071 0.054 0.010 0.313 0.268

(30,30,30,30,30) 0.95 0.9405 0.004 0.046 0.047 0.014 0.203 0.191

(50,50,50,50,50) 0.955 0.947 0.008 0.040 0.038 0.014 0.152 0.149

(75,75,75,75,75) 0.945 0.946 0.013 0.034 0.043 0.020 0.122 0.122

(100,100,100,100,100) 0.951 0.946 0.008 0.034 0.042 0.021 0.105 0.106

(20,30,20,25,30) 0.943 0.918 0.003 0.067 0.054 0.016 0.233 0.212

CP: coverage probability; LT: one side coverage probability (lower tail); UT: one side coverage

probability (upper tail); MIL:mean of the interval lengths.
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Table 6. Estimated coverage probabilities for 95% confidence intervals for ETAUC

under (Y1, Y2) � (Y3, Y4) with gamma distribution settings based on 2000 simulations.

(Y1, Y2) � (Y3, Y4)

GI NB GI NB GI NB GI NB

Sample size CP LT UT MIL

Y 1 ∼ Gamma(2, 6);Y 2 ∼ Gamma(2, 5);Y 3 ∼ Gamma(4, 6);Y 4 ∼ Gamma(4, 5); ETAUC = 0.5651

(15,15,15,15) 0.964 0.946 0.007 0.033 0.029 0.022 0.385 0.388

(30,30,30,30) 0.956 0.950 0.010 0.032 0.035 0.019 0.268 0.273

(50,50,50,50) 0.937 0.938 0.018 0.033 0.045 0.030 0.207 0.211

(75,75,75,75) 0.942 0.934 0.025 0.039 0.033 0.028 0.168 0.173

(100,100,100,100) 0.947 0.946 0.024 0.031 0.030 0.024 0.146 0.150

(20,30,20,20) 0.962 0.944 0.009 0.034 0.030 0.023 0.303 0.306

Y 1 ∼ Gamma(2, 6);Y 2 ∼ Gamma(3, 6);Y 3 ∼ Gamma(5, 5);Y 4 ∼ Gamma(6, 5); ETAUC = 0.7393

(15,15,15,15) 0.961 0.943 0.003 0.045 0.037 0.013 0.361 0.339

(30,30,30,30) 0.959 0.945 0.012 0.040 0.030 0.015 0.244 0.239

(50,50,50,50) 0.942 0.940 0.014 0.037 0.045 0.024 0.186 0.186

(75,75,75,75) 0.951 0.939 0.021 0.043 0.029 0.018 0.151 0.152

(100,100,100,100) 0.945 0.939 0.018 0.031 0.037 0.030 0.130 0.132

(20,30,20,20) 0.960 0.943 0.006 0.046 0.035 0.012 0.275 0.265

Y 1 ∼ Gamma(2, 6);Y 2 ∼ Gamma(4, 5);Y 3 ∼ Gamma(7, 4);Y 4 ∼ Gamma(8, 4); ETAUC = 0.8631

(15,15,15,15) 0.955 0.915 0.001 0.076 0.045 0.010 0.293 0.249

(30,30,30,30) 0.950 0.932 0.012 0.054 0.039 0.014 0.190 0.178

(50,50,50,50) 0.945 0.935 0.014 0.046 0.042 0.019 0.143 0.139

(75,75,75,75) 0.945 0.936 0.023 0.047 0.033 0.018 0.114 0.113

(100,100,100,100) 0.955 0.946 0.016 0.039 0.030 0.016 0.098 0.098

(20,30,20,20) 0.957 0.929 0.009 0.062 0.035 0.010 0.211 0.190

CP: coverage probability; LT: one side coverage probability (lower tail); UT: one side coverage

probability (upper tail); MIL:mean of the interval lengths.
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Table 7. Estimated coverage probabilities for 95% confidence intervals for ETAUC

under (Y1, Y2) � (Y3, Y4, Y5) with gamma distribution settings based on 2000

simulations.

(Y1, Y2) � (Y3, Y4, Y5)

GI NB GI NB GI NB GI NB

Sample size CP LT UT MIL

Y1 ∼ Gamma(2, 6);Y2 ∼ Gamma(2, 5);Y3 ∼ Gamma(4, 6);Y4 ∼ Gamma(5, 6);Y5 ∼ Gamma(6, 5); ETAUC = 0.5497

(15,15,15,15,15) 0.965 0.945 0.004 0.032 0.032 0.024 0.383 0.388

(30,30,30,30,30) 0.957 0.949 0.009 0.033 0.035 0.019 0.267 0.274

(50,50,50,50,50) 0.943 0.940 0.014 0.031 0.044 0.029 0.206 0.212

(75,75,75,75,75) 0.945 0.935 0.021 0.040 0.035 0.026 0.168 0.173

(100,100,100,100,100) 0.949 0.949 0.019 0.029 0.033 0.023 0.145 0.150

(20,30,20,25,30) 0.955 0.945 0.007 0.033 0.038 0.023 0.303 0.308

Y1 ∼ Gamma(2, 6);Y2 ∼ Gamma(3, 6);Y3 ∼ Gamma(5, 5);Y4 ∼ Gamma(5.5, 5);Y5 ∼ Gamma(6, 5); ETAUC = 0.6716

(15,15,15,15,15) 0.950 0.943 0.002 0.044 0.049 0.014 0.378 0.365

(30,30,30,30,30) 0.948 0.950 0.007 0.033 0.046 0.018 0.259 0.258

(50,50,50,50,50) 0.940 0.941 0.009 0.033 0.052 0.026 0.198 0.201

(75,75,75,75,75) 0.948 0.938 0.013 0.039 0.040 0.024 0.161 0.164

(100,100,100,100,100) 0.931 0.939 0.014 0.032 0.056 0.030 0.139 0.142

(20,30,20,25,30) 0.955 0.946 0.002 0.039 0.044 0.016 0.287 0.282

Y1 ∼ Gamma(2, 6);Y2 ∼ Gamma(3, 5);Y3 ∼ Gamma(6, 5);Y4 ∼ Gamma(7, 4);Y5 ∼ Gamma(8, 4); ETAUC = 0.8007

(15,15,15,15,15) 0.953 0.934 0.002 0.057 0.045 0.010 0.337 0.304

(30,30,30,30,30) 0.954 0.942 0.005 0.050 0.042 0.009 0.223 0.216

(50,50,50,50,50) 0.940 0.947 0.013 0.036 0.048 0.017 0.170 0.168

(75,75,75,75,75) 0.945 0.942 0.019 0.044 0.037 0.015 0.136 0.137

(100,100,100,100,100) 0.943 0.943 0.015 0.034 0.043 0.024 0.117 0.119

(20,30,20,25,30) 0.952 0.938 0.004 0.050 0.045 0.012 0.253 0.237

CP: coverage probability; LT: one side coverage probability (lower tail); UT: one side coverage

probability (upper tail); MIL:mean of the interval lengths.
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