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In health-related experiments, treatment effects can be identified using paired data that consist of 

pre- and post-treatment measurements. In this framework, sequential testing strategies are widely 

accepted statistical tools in practice. Since performances of parametric sequential testing 

procedures vitally depend on the validity of the parametric assumptions regarding underlying 

data distributions, we focus on distribution-free mechanisms for sequentially evaluating 

treatment effects. In fixed sample size designs, the density-based empirical likelihood (DBEL) 

methods provide powerful nonparametric approximations to optimal Neyman-Pearson type 

statistics. In this article, we extend the DBEL methodology to develop a novel sequential DBEL 

testing procedure for detecting treatment effects based on paired data. The asymptotic 

consistency of the proposed test is shown. An extensive Monte Carlo study confirms that the 

proposed test outperforms the conventional sequential Wilcoxon signed-rank test across a variety 

of alternatives. The excellent applicability of the proposed method is exemplified using the 

ventilator-associated pneumonia study that evaluates the effect of Chlorhexidine Gluconate 

treatment in reducing oral colonization by pathogens in ventilated patients. 

Keywords: Empirical likelihood; Density-based empirical likelihood; Entropy; Likelihood ratio; 

Paired data; Sequential signed-rank test; Treatment effect; Ventilator-associated pneumonia. 

1. INTRODUCTION 

In health-related studies, in order to test for treatment effects oftentimes investigators 

sequentially collect paired data that consist of pre- and post-treatment measurements.1 The 
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proposed method in this article is motivated by the following example. The oral cavity, 

especially dental plaque biofilms, may be colonized by potential respiratory pathogens (PRPs) in 

mechanically-ventilated (MV), intensive care unit (ICU) patients. Thus, by improving oral 

hygiene for the MV-ICU patients, we may prevent ventilator-associated pneumonia (VAP). One 

of the primary goals of the VAP study 2 was to evaluate the effect of Chlorhexidine Gluconate 

(CHX) treatment, a cationic chlorophenyl bis-biguanide antiseptic, in reducing oral colonization 

by pathogens in MV-ICU patients. The trial sequentially enrolled ventilated patients who were 

admitted to a trauma ICU of the Erie County Medical Center (ECMC). During this study, pre- 

and post-CHX treatment measurements of amount of aggregated bacteria (S. aureus, P. 

aeruginosa, Acinetobacter sps.) and enteric organisms (Klebsiella pneumoniae, Serratia 

marcescens, Enterobacter sps., Proteus mirabilis, E. coli) were recorded from each patient. We 

aim to develop a novel sequential methodology that requires substantially fewer numbers of 

patients to make a conclusion regarding CHX treatment effect based on the data from the VAP 

study. 

 It is desirable for investigators to detect treatment effects as early as possible, since the 

following two reasons are in effect: 1) The ethical reason: the ongoing clinical trials can have 

early termination when the significant superiority of the new therapy is statistically proven. In 

this case, stopping early enables other patients to begin receiving the superior treatment sooner. 3 

2) The efficiency reason: early termination of a trial yields savings in sample size. Thus, the 

sequential testing strategies can save resources and time. In these contexts, sequential statistical 

methods are important and frequently employed tools in practice. The statistical literature has 

dealt extensively with both the theoretical and applied aspects of various sequential statistical 

designs. 4-8 
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 Commonly, to implement sequential statistical procedures, parametric assumptions 

regarding the underlying data distribution are stated. Performances of parametric sequential 

testing procedures strongly depend on the assessment of the parametric assumptions of data 

distributions. Retrospective studies are generally based on already collected datasets or 

combining existing pieces of data. 9 In contrast with the analysis of data obtained retrospectively, 

we have the following problems related to sequential analysis. First, it is difficult to specify the 

parametric distribution form of the underlying data before data points are observed. Second, even 

if we have strong reasons to assume the parametric form of the data distribution, it will be 

extremely difficult, for example, to test the corresponding parametric assumptions after the 

execution of sequential procedures. Since sequential tests are assumed to be based on random 

number of observations, data obtained after sequential analyses cannot be evaluated for 

goodness-of-fit using the conventional retrospective tests. 10 Toward this end, in this article we 

focus on an efficient nonparametric sequential approach. 

 The modern theory of sequential analysis originates from the researches of Barnard 11 and 

Wald 12. In particular, the method of the sequential probability ratio test (SPRT) has been the 

predominant influence of the subsequent developments in the area. Note that since analytical 

forms of underlying data distributions are not completely specified, one cannot employ the most 

powerful SPRT testing strategy via the Neyman-Pearson concept. 13 As an alternative, Miller 14 

proposed a nonparametric sequential signed-rank test (SSRT), employing a Wilcoxon type test 

statistic. Wilcoxon type tests are commonly used to detect treatment effects based on paired data 

in fixed sample size designs. 15-17 In accordance with the repeated significance test, 18 the 

Miller’s approach fixes the total number of data points to be N and consists of a series of 

independent observations. The SSRT is performed after each data point, and stops either when 
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the maximum sample size is N or the test statistic rejects the null hypothesis. In the settings of 

the SSRT, we introduce a simple sequential test with high and stable power for detecting 

treatment effects over a broad spectrum of alternatives based on paired data. Oppegaard et al. 1 

recently applied a two-sample sequential Wilcoxon test in order to evaluate the difference in 

preoperative cervical dilation before hysteroscopy between postmenopausal women who receive 

vaginal misoprostol and postmenopausal women who receive vaginal placebo. 

 In this article, we present a novel nonparametric sequential testing procedure based on 

paired data, employing the data-driven likelihood ratio principle. The proposed method uses a 

nonparametric testing strategy that approximates corresponding optimal parametric Neyman-

Pearson type statistics. The density-based empirical likelihood (EL) approach 19,20 is modified 

and extended to be applied in the sequential setting. The proposed technique can be employed in 

the context of a single-arm trial, when a sample of individuals with the specified medical 

condition is given the study therapy and then followed over time to measure their outcomes. 

 The statistical literature has shown that the EL methodology is a very powerful inference 

tool in various nonparametric settings. 21-24 The conventional EL concept is outlined in Section 

2.3. To the best of our knowledge, the conventional EL concept and the density-based empirical 

likelihood (DBEL) methodology have not been extensively studied in the statistical sequential 

literature. The proposed method is distribution-free, robust to underlying model settings and 

highly efficient. We evaluate the performance of the new sequential DBEL method and the 

SSRT tests in terms of the statistical power and the average sample number (ASN). The ASN, by 

definition, means the expected value of the sample size for making decisions. The proposed test 

demonstrates significantly higher power and smaller ASN than those of the SSRT test across a 

variety of alternatives treated in an extensive MC study. In this article, we establish the 
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asymptotic consistency of the proposed test. It is clear that in general nonparametric settings 

there are no most powerful statistical mechanisms. Thus, it is very important to consider various 

reasonable and efficient distribution-free schemes in the framework of sequential analysis. 

This article is organized as follows. Section 2 outlines the classical SSRT test and 

introduces the proposed method. The development of the new test statistic is presented and its 

asymptotic properties are derived. In Section 3, an extensive MC study is conducted to evaluate 

the proposed method. In Section 4, the applicability of the proposed method is illustrated via a 

clinical trial study related to VAP. In this study, we detect treatment effect of CHX in ventilated 

patients by using the proposed method, while the SSRT test fails to show the corresponding 

statistical significance. In Section 5, we provide concluding remarks. The online supplementary 

material consists of the proof of the theoretical results presented in this article, the R-codes to 

implement the proposed method and the scatterplot that depicts the data considered in Section 4. 

2. SEQUENTIAL TESTING METHODS 

2.1 Hypothesis Setting 

In this section, we formalize the statement of the problem, describe the conventional 

methodology and introduce the novel approach. Let ( ),  i iX Y , i=1,2,…, denote sequentially 

surveyed independent and identically distributed (i.i.d.) pairs of observations within a subject i, 

where iX  represents the pre-treatment measurement and iY  represents the post-treatment 

measurement. Assume the maximum number of subjects allowed in the experiment is N. Define 

iii YXZ −= , 1 i N≤ ≤ . The nonparametric statistical literature 17 tends to associate the 

problem of detecting treatment effects with the problem of testing the following null hypothesis: 

( ) ( )uFuFFFH HHH −−==
000

1 , :0 , for all ∞<<∞− u  versus 

( ) ( )uFuFFFH HHH −−≠=
111

1 , :1 , for some ∞<<∞− u ,   (2.1) 
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where ( ) ( )PrF u Z u= ≤  is an unknown distribution function of i.i.d. , 1iZ i ≥ . 

2.2 Sequential Signed-rank Test for Treatment Effect based on Paired Data 

In this section, we outline the commonly used SSRT test for hypothesis (2.1) in practice. 14 Let 

niR , i=1,…,n, be the rank of iZ  in 1Z ,…, nZ .  The SSRT test statistic is 

( )1
0n

n i nii
SR I Z R

=
= ≥∑ , where ( )I ⋅  is the indicator function. In order to sequentially test for 

the null hypothesis (2.1), Miller 14 applied the following stopping rule 

{ },min : 1,  n Nn n TS zατ = ≥ ≥ ,    (2.2) 

where ( ) ( )( )( ) 1/2
1 / 4 1 2 1 / 24n nTS SR n n n n n

−
= − + + + , α  is the pre-specified significance level 

and ,Nzα  is the critical value associated with N and α . The decision making policy consists of 

the following algorithm: 1) if, for the first time, for some n ( )N≤ , nTS  exceeds ,Nzα , we have 

nτ =  and the experiment is terminated at that stage along with the decision to reject 0H ; 2) if, 

no such n exists, the null hypothesis is not rejected along with the termination of the experiment 

at the target maximum sample size N. 

 The critical value ,Nzα  can be determined using the following scheme. Define 

{ }
1
maxN nn N

W TS
≤ ≤

= . Let Pr
kH  be the probability measure corresponding to the hypothesis kH  (k=0, 

1). Thus, by definition (2.2), ,Nzα  is the upper α -percentile of the distribution of NW  satisfying 

{ }
0 ,PrH N NW zα α≥ = . Note that, under 0H , the distribution function of NW  is data-distribution-

free, since { }
0 ,PrH N NW zα≤ = { }

0 1 , ,Pr ,...,H N N NTS z TS zα α≤ ≤  and the joint distribution function 

of { }:  1nTS n N≤ ≤  does not depend on the underlying data distribution function of 1,..., NZ Z . 

The structure of the statistic NW  is complicated. In practice, one can use the MC methodology in 
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order to evaluate { }
0 ,PrH N NW zα≥  and compute critical values of ,Nzα  for various choices of N 

and α . 14 

2.3 Sequential Density-based Empirical Likelihood Ratio Test based on Paired Data 

In this section, we develop the DBEL based method for sequentially detecting treatment effects. 

We begin with considerations related to a retrospective statement of the testing problem, i.e. the 

sample size is fixed to be n.  

The EL approach: In order to outline the conventional EL concept, we assume that 1 nU ,...,U  are 

i.i.d. data points with mean ( )E U . Consider the commonly used EL ratio test for the null 

hypothesis 0H : ( ) 0E U θ=  vs. 1H : ( ) 0E U θ≠ , where 0θ  is known. In this case, the EL 

function has the form ∏=
=

n

i ipEL
1

, where ip ’s are the probability weights. Under 0H , values 

of ip ’s can be derived by maximizing the EL function under the empirical constraints 

1
1

=∑ =

n

i ip  and 01

n
i ii

U p θ
=

=∑ . Under the alternative hypothesis 1H , the EL function is given 

by nnEL −= , since ∏=

n

i ip
1

 is maximized by 1−= npi  (i=1,…,n), when the only constraint 

1
1

=∑ =

n

i ip  is in effect. In this framework, we reject 0H  for large values of ( )1
2 logn

ii
np

=
− ∑  that 

presents ( ) ( ){ }0 12 log     EL under H EL under H− . This methodology is well developed when 

data is collected retrospectively, i.e. n is fixed. 

The DBEL approach: Motivated by the well-known Neyman-Pearson lemma, Vexler and 

Gurevich 25 used the EL concept to develop the distribution-free density-based EL (DBEL) 

methodology for approximating parametric likelihood ratio type statistics. The DBEL method 

proposes to consider the likelihood in the form 
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( )1 1

n n
f i ii i

DBEL f U f
= =

= =∏ ∏ , ( )i ( i )f f U= , 

where ( )⋅f  is a density function of 1 nU ,...,U , and ( ) ( )1 nU .... U≤ ≤  are the order statistics based on 

1 nU ,...,U . The DBEL approach is a technique to approximate values of if , i=1,…,n, via 

maximization of fDBEL  given a constraint related to an empirical version of the density 

property ( )∫ =1duuf . The DBEL testing approach revolves around exact test statistics which are 

independent of underlying data distributions under 0H . Recent developments of the DBEL 

techniques can be found in various statistical publications. 26-29 

Taking into account the setting of Section 2.1, in the case of completely specified forms 

of the density functions, we have that the likelihood ratio test statistic based on nZZ ,....,1  is 

( )
( )

( )( )
( )( )

1 11

0 00

,1 11

,1 11

n nn
H H jjH i j ji

n nn
H i H jH ji jj

f Z ff Z
LR

f Z ff Z
= ==

= ==

= = =
∏ ∏∏

∏ ∏∏
, 

where ( )uf
kH  denotes the density function of 1Z  under kH  (k=0,1) and ( ) ( )nZZ ≤⋅⋅⋅≤1  are the 

order statistics based on observations 1Z ,…, nZ . Since in practice the data distributions are 

unknown, the DBEL approach focuses on approximating the values of ( )( )jH Zf
k

 (k=0,1 and 

j=1,…, n) via maximizing the likelihood ( )( )∏ =

n

j jH Zf
k1

 provided that ( )( ) ( )( )k kH Hj nf Z ,..., f Z  

satisfy an empirical constraint that corresponds to ( )∫ = 1duuf
kH  under kH . 25,28 To formalize 

this constraint, we specify, ( ) (1)rZ Z=  if r≤ 1, and ( ) ( )r nZ Z=  if r≥ n, and employ the result 

( ) ( ) ( ) ( ) ( )( ) ( ) ( 1) ( 1)

1 1 1 1
( ) (1) ( ) ( )1 1

1 ,
2 2

j m n n i i

j m n i i

n m iZ Z Z Z

H H H HZ Z Z Z
j i

m i
f u du f u du f u du f u du

m m
+ − + +

− −

−

= =

−  = − + 
 ∑ ∑∫ ∫ ∫ ∫  
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for all integer 
2
nm ≤ . (2.3) 

(See Proposition 2.1 of Vexler and Gurevich. 25) Since ( ) ( )( )

1 1
(1)

1,nZ

H HZ
f u du f u du

+∞

−∞
≤ =∫ ∫  

Equation (2.3) implies the inequality ( ) ( )( )

1
( )

1
1/ 2 1j m

j m

Zn
Hj Z

m f u du+

−
=

≤∑ ∫ . In this case, one can 

expect that ( ) ( )( )

1
( )

1
1/ 2 1j m

j m

Zn
Hj Z

m f u du+

−
=

≈∑ ∫  when / 0m n → , as ,m n →∞ .30 Let 
0

ˆ
HF  and 

1
ˆ

HF  

denote estimators of 
0HF  and 

1HF , respectively. Using the approximate analog to the mean-value 

integration theorem, one can derive the following empirical approximations 

( ) ( )
( ) ( ) ( )( ) ( ) ( )1 1

1 0 0
( ) ( ) ( )

0 0

,

1 1 1 ,

,j m j m j m

j m j m j m

n n nZ Z ZH H j
H H HZ Z Z

j j jH H j

f u f
f u du f u du f u du

f u f
+ + +

− − −= = =

= ≈∑ ∑ ∑∫ ∫ ∫  

                               ( ) ( )( )1

0 0

0

,
( ) ( )

1 ,

,
n

H j
H j m H j m

j H j

f
F Z F Z

f + −
=

≈ −∑  

                  ( ) ( ) ( )( )

1 1 1
(1)

( ) (1)
ˆ ˆ ,nZ

H H n HZ
f u du F Z F Z≈ −∫  and 

( ) ( )( 1) ( 1)

1 1
( ) ( )

n i i

n i i

Z Z

H HZ Z
f u du f u du− + +

−

 + 
 ∫ ∫ ( ) ( )( ) ( ) ( )( )1 1 1 1( 1) ( ) ( 1) ( )

ˆ ˆ ˆ ˆ
H n i H n i H i H iF Z F Z F Z F Z− + − +≈ − + − . 

Defining 
1

ˆ
HF  as the empirical distribution function, then we obtain the empirical version of (2.3) 

( ) ( )( ) ( )
1

0 0

0

,
( ) ( )

1 ,

11 1ˆ ˆ 1 .
2 2

n
H j

H j m H j m
j H j

f m
F Z F Z

m f n n+ −
=

− − = − − 
 

∑  

In order to define 
0

ˆ
HF , we apply the distribution-free estimation for a symmetric distribution 

proposed by Schuster. 31 Thus, we obtain the empirical constraint 

( )
1

0

,

1 ,

11 1 ,
2 2

n
H j

jm
j H j

f m
m f n=

+
∆ = −∑     (2.4) 
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where ( ) ( )( ) ( )( ) ( )( ) ( )( ){ }∑ = −−++
− ≤−−≤−≤−+≤=∆

n

i mjimjimjimjijm ZZIZZIZZIZZIn
1

12: . In 

order to find values of 
1 ,H jf  that maximize the log-likelihood ( )1 ,1

logn
H jj

f
=∑  subject to 

constraint (2.4), we derive 
1 ,H if∂ ∂ , i=1,…, n, from the Lagrange function 

( ) 1

1

0

,
,

1 1 ,

1 1log 1 ,
2 2

n n
H j

H j jm
j j H j

fmf
n m fλ λ

= =

 +
Λ = + − − ∆  

 
∑ ∑  

where λ  is the Lagrange multiplier. Then it is clear that the equation 
1, 0H jfλ∂Λ ∂ =  provides 

( )( )( )
1 0

1

, ,

2 1 1 2
,H j H j

jm

m m n
f f

n

−− +
=

∆
 j=1,…,n. 

This implies that the empirical maximum likelihood approximation to the likelihood 
1 ,1

n
H jj

f
=∏ , 

under alternative hypothesis 1H , can be presented as  

( )( )( )
0

1

,
1

2 1 1 2
.

n

H j
j jm

m m n
f

n

−

=

− +

∆∏  

Therefore, the approximate LR has the empirical form 

( )( )( )1

1

2 1 1 2
.

n

nm
j jm

m m n
V

n

−

=

− +
=

∆∏     (2.5) 

Note that the test statistic (2.5) has a structure similar to those of statistics based on sample 

entropy that are known to have asymptotic optimal properties. 32,33 

 The performance of the statistic nmV  strongly depends on the unknown value of the 

integer parameter m. In order to eliminate the dependence on the parameter m, we use the 

maximum likelihood based methods shown in Vexler and Gurevich 25 and Vexler et al. 34 Then 

we employ the maximum likelihood principle to propose the test statistic 
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( ) ( )
( )( )( ) ( )1

1
min 2 1 1 2n

n jmja n m b n
V m m n n−

=≤ ≤
= − + ∆∏ ,   (2.6) 

where ( ) δ+= 5.0nna , ( ) ( )1min , / 2b n n nδ−= , and ( )25.0 ,0∈δ . Following the DBEL literature, 30 

we choose 0.1δ =  in practice and define njm /1=∆ , if 0=∆ jm . 

The sequential DBEL approach: Finally, to sequentially test hypothesis (2.1), we define the 

following stopping rule  

( ){ }1 ,min : 1,  log n Nn n V cατ = ≥ ≥ ,    (2.7) 

where nV  is defined in (2.6), α  is the significance level and ,Ncα  is the critical value associated 

with N and α  satisfying ( )
0 1PrH Nτ α≤ = . Note that we set ( )log 0nV = , for n=1, 2, 3, since 

4n ≥  is required to compute the statistic ( )log nV . The proposed decision making policy 

regarding stopping rule (2.7) consists of the following algorithm: 1) if, for the first time, for 

some n ( )N≤ , ( )log nV  exceeds ,Ncα , we have 1 nτ =  and the experiment is terminated at that 

stage along with the decision to reject 0H ; 2) if, no such n exists, the null hypothesis is not 

rejected along with the termination of the experiment at the target maximum sample size N. We 

consider derivation of ,Ncα  values in Section 2.4. 

 Since the stopping rule 1τ  is based on the statistic nV  which approximates the optimal 

parametric LR, the proposed test procedure can be anticipated to be very efficient. This is 

empirically confirmed in Sections 3 and 4. 

 The following proposition demonstrates the consistency of the proposed test. 

Proposition 1. Under 0H , we have 

( ){ }0 1
0H nn N

Pr max log V N γ

≤ ≤
> →  as ∞→N , 
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whereas, under 1H , we have 

( ){ }1 1
1H nn N

Pr max log V N γ

≤ ≤
> →  as ∞→N , 

where nV  is defined by (2.6) and ( )1 ,75.0∈γ . 

Proof. The proof of this proposition is outlined in Appendix A. 

The Type I error probability related to the proposed test procedure (2.7) is { }
0 1PrH Nτ ≤ =

( ){ }0 ,1
Pr max log .H n Nn N

V cα≤ ≤
> Assume ( ),Nc O N γ

α = then Proposition 1 provides that 

( ){ }0 ,1
Pr max log 0H n Nn N

V cα≤ ≤
> →  as ∞→N . Then it is clear that, in order to satisfy 

{ }
0 1PrH Nτ α≤ = , for a fixed value α  and large values of N, ,Ncα  should be in an order of 

( )o N γ . Thus, the proposed test procedure is consistent, since ( ){ }1 ,1
Pr max log 1H n Nn N

V cα≤ ≤
> →  as 

∞→N , when ,Ncα  has an order smaller than that of .N γ  (In this case, 

( ){ }0 1
Pr max logH nn N

V N γ

≤ ≤
>  is asymptotically a lower bound for ( ){ }0 ,1

Pr max logH n Nn N
V cα≤ ≤

> , when 

,Nc N γ
α <  as 1N  .) 

2.4 Null distribution of 1τ  

In this section, we show that the proposed test statistic is distribution-free under 0H . We then 

present the critical values for the new test procedure. The stopping rule 1τ  contains the DBEL 

test statistics 1 2, ,...V V , which by definitions (2.4) and (2.6) depend only on certain indicator 
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functions. It turns out that the null distribution of the stopping rule 1τ  is independent of the 

distribution of the observations 1 2, ,...Z Z . In order to explain this claim, we note that under 0H  

( ) ( ){ } ( ){ }0 0

1 1
i j H i H jI Z Z I F Z F Z− − ≤ = Φ ≤ Φ   and 

( ) ( ){ } ( ){ } ( ){ } ( ){ }0 0 0 0

1 1 1 11i j H i H j H i H jI Z Z I F Z F Z I F Z F Z− − − −   − ≤ = Φ − ≤ Φ = Φ − ≤ Φ     

( ){ } ( ){ }0 0

1 1
H i H jI F Z F Z− − = −Φ ≤ Φ  , for [ ]Nji  ,1∈≠ , 

where ( )x1−Φ  denotes the inverse function of the standard normal cumulative distribution 

function ( )xΦ . This fact implies the Type I error rate is 

( ){ } ( ) ( ){ }0 1, ,,..., ~ 0,11 1
Pr max log Pr max log

NH n N n NZ Z Normaln N n N
V c V cα α≤ ≤ ≤ ≤

> = > . 

Then it is clear that the proposed procedure (2.7) is exact. Let ( ){ }
1
max logN nn N

DBTS V
≤ ≤

= . Thus, by 

definition (2.6), ,Ncα  is the upper α -percentile of the distribution of NDBTS  satisfying 

{ }
0 ,PrH N NDBTS cα α≥ = . In a similar manner to the computing scheme shown in the SSRT 

procedure, we tabulate the critical values of ,Ncα  for various choices of N and α  using the MC 

approach based on 25,000 generations of 1,..., NZ Z . The results are shown in Table 1. 

Table 1. 

Remark 1. The MC method is a well-known approach for obtaining accurate approximations of 

the critical values for exact tests. 35 Vexler et al. 36 proposed an approach to compute critical 

values of exact test procedures using tabulated critical values and MC simulations in a Bayesian 

manner. In this framework, tabulated critical values are considered as prior information and 

simulated MC observations are used as data. 

3. MONTE CARLO STUDY 
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To evaluate the performance of the new testing strategy as compared to the classical SSRT 

procedure, we carried out an extensive MC study. We examined the ASN and the corresponding 

statistical powers of the considered procedures. Critical values of the tests were set at the 5% 

level of significance and the MC experiments were repeated 10,000 times in each scenario based 

on N=25, 50 and 75, respectively. According to the statistical literature, 30,37 we used the 

alternatives in the MC study following the scenarios: (1) constant shifts in location, e.g., 

)1 ,0(~ NX i  and )1 ,5.0(~ NYi , i=1,…,N; (2) constant and nonconstant shifts, e.g., )1 ,0(~ NX i  

and )2 ,5.0(~ 2NYi , i=1,…,N; (3) skewed alternatives, e.g., )1 ,1(~ LogNX i  and 

).50 ,1(~ 2LogNYi , i=1,…,N; and (4) nonconstant shifts, e.g., )1 ,7.0(~ BetaX i  and )2(~ ExpYi , 

i=1,…,N. Note that the statistical literature expects that the classical SSRT, which is based on the 

Wilcoxon signed-rank statistic, will be very efficient in scenario (1). Regarding Scenario (3), one 

can remark that that many measurements of markers related to health and social science have 

been shown to follow lognormal distributions. 38 The corresponding MC results are presented in 

Table 2. (In the Supplementary Material (SM), we provide Table S1 with additional outputs of 

the MC study.) 

 In Scenarios (1-2), the SSRT demonstrates a slightly higher power than the new test. (In 

the SM, we also show several cases, when the SSRT slightly outperforms the proposed 

procedure.) This result is consistent with the MC evaluations of the DBEL and the Wilcoxon 

signed rank tests in retrospective settings when observations are normally distributed. 30 The 

ASNs of the proposed test are comparable with those of the SSRT. In Scenario (3), when the pre- 

and/or post- measurements are lognormally distributed, the proposed testing procedure 

substantially outperforms the SSRT in terms of the statistical power and the ASN in the 
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considered alternatives for N=50, 75. Consider the case when iii YXZ −= , i=1,…,N , iX ~

( )1 ,0LogN  and iY ~ ( )2 ,1U , i=1,…,N, with N=50, 75. In this scenario, the SSRT shows the 

powers of 0.22 and 0.28 with the corresponding ASNs of 45 and 64, respectively, whereas the 

proposed test provides the powers of 0.70 and 0.98 with corresponding ASNs of 40 and 44, 

respectively. In Scenario (4), the proposed testing procedure has better performance in terms of 

the statistical power and the ASN than the SSRT in most of the considered cases. 

 Thus, compared to the SSRT, the sequential DBEL test procedure shows higher power 

and relatively smaller ASNs in many cases of the considered alternatives. 

Table 2. 

4. APPLICATION TO THE VENTILATOR-ASSOCIATED PNEUMONIA 
(VAP) STUDY 

The VAP data were produced in the course of an institutional study at the State University of 

New York at Buffalo, in which oral treatments were compared to investigate their effects on 

infection of patients’ respiratory system in an ICU. The pathogenesis of pneumonia, including 

VAP, involves aspiration of bacteria from the oropharynx into the lung, and subsequent failure of 

host defenses to clear the bacteria resulting in development of lung infection. The major potential 

respiratory bacterial pathogens (PRPs) include Staphylococcus aureus, Pseudomonas aeruginosa, 

Acinetobacter sps. and enteric species. Prior biomedical studies have found the association 

between strains from bronchocopic cultures isolated at the time pneumonia was suspected and 

dental plaque/mucosa that is often colonized by PRPs. 39,40 Thus, improving oral hygiene in MV-

ICU patients and reducing dental plaque load on teeth has the potential to reduce the risk of VAP. 

The trial sequentially enrolled and examined 83 patients who were admitted to a trauma ICU of 
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the Erie County Medical Center (ECMC). During this study, pre- and post-CHX treatment 

measurements of amount of aggregated bacteria (S. aureus, P. aeruginosa, Acinetobacter sps., 

and enteric organisms) were recorded from each patient. Results of quantitative cultures were 

expressed as colony forming units (cfu) per ml. Figure 1 shows the histogram of post- and pre-

measurement differences of the 83 paired data points. (In the SM, Figure S1 presents the 

scatterplot based on pre- and post-CHX treatment measurements.) Based on the Shapiro-Wilk 

test of normality we reject the normality assumption for the observed paired data points (p-value 

= 0.03). Retrospectively, we apply the Wilcoxon signed-rank test based on the total 83 paired 

data points, obtaining the corresponding p-value of 0.04 (<0.05). Thus, the Wilcoxon singed-

rank test rejects the hypothesis that there is no difference between pre- and post-measurements of 

aggregated bacteria. This conclusion is coherent to available clinical trial results that 

demonstrated an effect of CHX on the prevalence of oropharyngeal colonization of respiratory 

bacterial pathogens. 40 We examine that the proposed sequential DBEL testing scheme and the 

conventional SSRT procedure can detect the treatment effect in a more efficient manner, in a 

sense that the sequential methods will provide significant testing results based on less than the 

total sample size of 83. 

 In accordance with Section 2, we use the MC method to compute 95% critical values 

2.676 and 5.166 for the SSRT and the proposed method, respectively, using N=83. The proposed 

sequential DBEL method rejected the null hypothesis that there is no difference between pre- and 

post-measurements based on 50 observations. However, the SSRT failed to reject the null 

hypothesis using the total 83 observations.  

 In order to evaluate the robustness of the proposed approach, we conducted the following 

bootstrap-type analyses. The strategy is that a sample with size N (<83) was randomly selected 
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from the 83 paired data points to calculate the stopping numbers based on the sample using the 

proposed method and the SSRT. We repeated this strategy 5,000 times calculating the ASNs and 

the frequencies that the proposed method and the SSRT reject the null hypothesis. Table 3 

presents these results for the different maximum sample sizes of N=15, 25, 35, 50, 65, and 75. In 

this Bootstrap-type study, we notice that 1) the proposed method has substantially higher 

rejections rates of a false null hypothesis than those of the SSRT; 2) the proposed method 

consistently generates smaller ASNs than those of the SSRT, resulting in significant savings in 

sample sizes. 

Figure 1. 

Table 3. 

5. CONCLUSIONS 

We have developed a new nonparametric sequential technique for detecting treatment effects 

based on paired data. The proposed method employs the density-based EL methodology that 

approximates the optimal likelihood ratio statistic in a distribution-free fashion. In the real world 

study, the new test clearly outperforms the conventional SSRT. To the best of our knowledge, 

perhaps, this article presents a research that belongs to a first cohort of studies related to 

applications of the EL techniques in sequential manners. The method developed in this article 

can be extended to construct various nonparametric group sequential approaches. For example, 

for a fixed integer k , the stopping rule (2.7) can be modified to be based on statistic ( )log knV . 

Further empirical and theoretical studies are needed to evaluate the proposed approach in this 

framework. 

 It is clear that in the distribution-free setting considered in this article, there are no most 

powerful statistical procedures. Therefore it is very important to consider and evaluate 
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reasonably developed decision making policies in the context of detecting treatment effects in 

practice. 

APPENDIX A. PROOF OF PROPOSITION 1 

The proof of Proposition 1 is relatively complicated, since, in general, we need to evaluate 

properties of the statistic ( ) ( ) ( )( )1 1
2n

n N jma n m b n j
max log min m / n≤ ≤ ≤ ≤ =

∆∏ , whereas the published 

asymptotic DBEL results consider ( ) ( ) ( )( )1
2n

jma n m b n j
log min m / n≤ ≤ =

∆∏ -type constructions as 

n →∞ . The online supplementary material provides technical details of examining the property 

( ) ( )
( )

1

2 1    0 1 0 75  1
k

n

H a n m b n jn N jm

mPr log min N k , k , , . , ,
n

γ γ
≤ ≤

=≤

     < → − = ∈   ∆     
∏

 as ∞→N   

of the corresponding joint probabilities. 

SUPPLEMENTARY MATERIALS 

Detailed proof of the proposition presented in Section 2, the R codes implementing the proposed 

method, the additional MC results are available in the supplementary materials and the 

scatterplot that illustrates the data considered in Section 4. 
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Table 1. The critical values ,Ncα  of the new test procedure at the significance levels α ’s. 

N/

α  
0.010 0.015 0.020 0.025 0.040 0.050 0.060 0.100 0.150 0.200 0.300 

5 3.514 3.514 3.514 3.514 3.514 3.514 3.514 2.854 2.557 1.873 1.276 

10 5.667 4.949 4.949 4.841 4.288 4.081 3.963 3.412 2.854 2.557 1.873 

15 6.043 5.667 5.178 4.949 4.447 4.288 4.081 3.514 3.007 2.854 2.259 

20 6.194 5.716 5.476 5.048 4.723 4.288 4.288 3.514 3.228 2.854 2.469 

25 6.345 5.716 5.667 5.312 4.890 4.554 4.288 3.724 3.412 2.938 2.557 

30 6.473 5.897 5.667 5.420 4.890 4.660 4.318 3.884 3.438 3.045 2.659 

35 6.478 5.983 5.716 5.457 4.949 4.766 4.447 3.963 3.514 3.161 2.786 
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40 6.478 6.026 5.716 5.525 4.949 4.830 4.534 4.030 3.514 3.253 2.854 

45 6.478 6.123 5.716 5.638 4.949 4.841 4.589 4.081 3.514 3.338 2.854 

50 6.478 6.168 5.751 5.667 5.027 4.890 4.723 4.121 3.614 3.412 2.882 

55 6.575 6.194 5.783 5.667 5.061 4.926 4.735 4.211 3.685 3.441 2.940 

60 6.724 6.345 5.959 5.716 5.176 4.949 4.841 4.288 3.768 3.514 3.027 

65 6.594 6.278 5.906 5.716 5.158 4.949 4.843 4.288 3.839 3.514 3.091 

70 6.739 6.345 6.046 5.716 5.280 4.980 4.890 4.288 3.930 3.537 3.161 

75 6.734 6.345 6.048 5.716 5.321 5.017 4.929 4.309 3.976 3.606 3.231 

 

Table 2. The MC powers and ASNs of the proposed sequential DBEL (Seq_DBEL) test and the 

SSRT at the significance level 05.0=α . 

       Seq_DBEL SSRT 
Scenario XF  YF  N Power ASN Power ASN 

(S1) 
N(0,1) N(0.5,1) 25 0.256 22 0.297 22 

  50 0.446 40 0.534 39 

  75 0.660 52 0.712 50 

(S2) 
N(0,1) N(0.5, 22 ) 25 0.124 24 0.144 24 

  50 0.197 45 0.240 45 

  75 0.298 65 0.334 64 

(S3) 

LogN(1,1) LogN(1, 20.5 ) 25 0.073 24 0.066 24 
  50 0.167 47 0.088 48 
  75 0.386 66 0.113 71 
LogN(0,1) U(1,2) 25 0.168 23 0.162 23 

  50 0.698 40 0.222 45 
  75 0.981 44 0.286 64 
LogN(0, 23 ) Chisq(6) 25 0.314 23 0.186 23 
  50 0.962 32 0.245 44 
  75 1 33 0.315 62 
LogN(1,1) Gamma(5,1) 25 0.233 22 0.283 22 

  50 0.561 39 0.459 40 
  75 0.867 48 0.607 53 

(S4) 

Exp(1) Gamma(2,3) 25 0.14 24 0.138 24 
  50 0.284 44 0.25 45 
  75 0.482 61 0.365 63 
Gamma(5,1) Gamma(1,1/5) 25 0.089 24 0.101 24 
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  50 0.183 46 0.126 47 
  75 0.408 65 0.158 69 

Exp(1) U(-1,2) 25 0.249 23 0.268 23 
  50 0.565 39 0.497 40 
  75 0.853 47 0.688 51 
Gamma(4,2) Gamma(5,2) 25 0.235 22 0.283 22 

  50 0.412 41 0.501 39 
  75 0.621 54 0.680 51 

Chisq(1) Beta(0.7,1) 25 0.265 23 0.225 23 
  50 0.788 37 0.430 41 
  75 0.993 40 0.626 54 
Gamma(2,1) U(1,2) 25 0.178 23 0.161 24 
  50 0.511 42 0.305 44 
  75 0.890 50 0.443 61 
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Figure 1. The histogram of the total 83 paired differences of pre- and post-CHX treatment 

measurements. The estimated mean, median and standard deviation of the 83 paired data points 

are 1.212, 0.002 and 5.036, respectively. 

 

Table 3. The Bootstrap based rejection rates (RRs) and ASNs of the new test (Seq_DBEL) and 

the SSRT at the significance level of 0.05. 

 Seq_DBEL SSRT 

N RRs ASNs RRs ASNs 

15 21.7% 13 5.82% 15 

25 27.1% 21 5.48% 24 

35 34.4% 22 6.40% 34 

50 42.2% 39 6.63% 48 

65 54.9% 47 5.88% 63 

75 63.2% 52 5.75% 72 
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A Sequential Density-Based Empirical Likelihood Ratio Test for 

Treatment Effects 
Li Zou, Albert Vexler, Jihnhee Yu, and Hongzhi Wan 

In this supplementary material, we provide the proof of Proposition 1, the R codes used in 

Sections 2-3 in this article, the additional MC results and the scatterplot that depicts the data 

considered in Section 4. 

1. THE PROOF OF PROPOSITION 1. 

Proposition 1. Under 0H , we have 
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Proof. 

 It is clear that the deterministic term ( ) ( )1 / 2m n+  in the definition of nV  quickly 
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δ
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


≤














∆∑
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δ
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δ
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
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∆
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∆
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δ
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δ
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
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∆
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∆
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δ
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δ
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CBA ++≤ ,  (2) 

where 













>




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

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
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−
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N
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

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
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>
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
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
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δ δ

N
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










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







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21

1 1
0
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1
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δ δ
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n
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n
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NnH . 

Consider item A. The statistic 

( )( ) ( )( ) δ
δ

δ
δδ

−
−

==
+

− ≥
−+

≥







−≥−−≥+−+=∆ ∑∑ −− n

n
njZZIZZInj

n

n

i
i

n

i
njijn 5.0

2
11

2
1 1

1
1

1

1
11 , 

for 11,...,j n δ−= . Define 1β , satisfying 110 γβ << , we obtain 
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
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∆
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δ
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   ( ) ( )












−>














∆
≤ −

=

−
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∑

−

−

4log2logmaxPr 1

1

1
11

1

1
10

δβγ
δδ

δ
β

NN
n

nn

j jn
NnN

H , 

since δ
δ

−≥∆ − njn 5.01  is applied taking into account the term ( ){ }1

1
1

1
1

11
max log 2n

jnjn N
n n

δ

δβ

δ
−

−

−
−

=≤ ≤
∆∑ . 

Define the function ( ) ( ) ( )xFxFxD nn −= , where ( ) ( )1
1

n
n ii

F x n I Z x−
=

= ≤∑  is the empirical 

distribution function. Then, for δ−≤≤ 11 nj , we can rewrite δ−∆ 1jn  in the form 

( )( ) ( ){ }1 1

1

1
1 1

2 2 n njn j n

j n F Z F Z
nδ δ

δ

− −

−

+

+ −  ∆ = + − − − 
 

, 

where ( )( ) ( )( ) ( )( )111 ZFZDZF nn −+−=−  and ( ) ( ) ( )1 1 1n nj n j n j n
F Z D Z F Zδ δ δ− − −+ + +
     − = − + −     
     

. The 

statement of ( ) ( )1F z F z= − −  implies that, under 0H , we have 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )1111111 11 ZFZFZFZDZFZDZF nnnnn −−++−=−+−=−  

   ( )( ) ( )( )
n

ZDZD nn
1111 −++−= . 

In a similar manner to that shown above, we have 

( ) ( ) ( ) ( )1 1 1
1 11n n nj n j n j n

F Z D Z D Z n j nδ δ δ
δ

− − −
− −

+ + +
     − = − + + − +     
     

. 

Then 

( )( ) ( )( ) ( )( ) ( )( ){ }δδδ

δ

−−− ++

−

−−−+−+
−+

=∆ 111 11

1

2
11

njnnjnnnjn ZDZDZDZD
n

nj . 

Let 2β  satisfy 1220 ββ << . We obtain 
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
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β

δ

δ
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NDNN
n
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NnN
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NnN

Hn
NnN

H .     (3) 

The proposition of Dvoretzky, Kiefer, and Wolfowitz 1, P.60 provides 

221

22
2

10

2
21

maxPr
ββ

ββ

β −

−
−

−

−

≤≤ −
≤





 > N

Nn
NnN

H e
e
CND , 

where C is a finite positive constant and 2
22 22 21 ββ −− −≈

−

Ne N , as ∞→N . These results yield the 

conclusion 

 0maxPr 2

10
→





 > −

≤≤

β
β

NDn
NnN

H  as ∞→N , (4) 

where 1220 ββ << . Set up δ  to satisfy 20 βδ <<  and 11 γδ <− . In (3) under the event 
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1
max n

N n N
D N

β
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≤ ≤
≤ , we have 
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n
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by the fact that ( ) 22
1 221 11 βδβδ
δ

−−−−− −≥−−+≥∆ − NnNnnjjn
. Considering (3) and 

( ) ( ) ( )111 4log1 γδβγ NONN =− − , we conclude that 
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By virtue of (4) and (5), we have 
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since δ
δ

−≥∆ − njn1  is applied taking into account the term ( ){ }1
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3

1
1
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max log 2n n

jnj nn N
n n

δ

δδβ

δ
−
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∆∑ . In 

a similar manner to that we analyzed the item δ−∆ 1jn , when δδ −− −≤≤+ 11 1 nnjn , we obtain 
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The result of Dvoretzky, Kiefer, and Wolfowitz 1, P.60 provides 

 ( ) 0maxPr 4
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→> −

≤≤

β
β

NDn
NnN

H  as ∞→N , (8) 

where 3420 ββ << . Set up δ  to satisfy 40 βδ <<  and 241 γβδ <−+ . In (7), under the event 

{ }4

3
max n

N n N
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( ) ( ) ( )44
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1 1
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, 

since 4
1 22 βδ
δ

−− −≥∆ − Nnjn
. Considering (7), since ( )( ) ( ) ( )2332 2log2 1 γδββγ NONNN =−− − , we 

conclude that 
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as ∞→N . By virtue of (8) and (9), we have 

( )( ) ( ) 02log22logmaxPr 1

1

1
332

1

1 1
30

→












−−>














∆
−

−

+=

−

≤≤
∑

−

− −

δββγ
δδ

δ δ
β

NNN
n

nnn

nj jn
NnN

H  as ∞→N . 

This leads to 

 02logmaxPr 2

1

1 1
0

1

1

1
→













>














∆
= ∑

−

− −

−

+=

−

≤≤

γ
δδ

δ δ

N
n

nB
nn

nj jn
NnH  as ∞→N . (10) 

Now we consider the third item ( )( ){ }21
1 10 1

11

1
2logmaxPr γγγδ

δ δ NNNnnC n

nnj jnNnH −−>∆= ∑ +−=

−−

≤≤
− −  at (2). 

The statistic 

( )( ) ( )( ) δ
δ

δ
δδ

−
−

=
−

=

− ≥
−+

≥







−≥−−≥+−+=∆ ∑∑ −− n

n
jnnZZIZZIjnn

n

n

i
nji

n

i
nijn 5.0

22
1 1

11

1
11 , 

for 1 1,...,j n n nδ−= − + . Define 5β , satisfying γβ << 50 , to obtain 













−−>














∆
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







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−
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≤≤ − −− −
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1 1
51 1
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1

1

1

1

1

2logmax2logmaxPr γγγ
δδ

δ δ
β

δ δ
β

NNN
n

n
n
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n

nnj jn
NnN

n

nnj jn
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H  
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    ( ) ( )












−−−>














∆
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+−=

−
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∑

− −

4log2logmaxPr 1

1

1
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1 1
50

δβγγγ
δ

δ δ
β

NNNN
n

nn

nnj jn
NnN

H , 

since δ
δ

−≥∆ − njn 5.01  is applied taking into account ( )( )1
5 1

1

1 1

max log 2 / .
n

jnn N j n n

n n δβ
δ

δ
−

−

−

≤ ≤ = − +

∆∑  In a 

similar manner to that we analyzed the item δ−∆ 1jn , when njnn ≤≤+− − 11 δ , we obtain 

( ) ( ) ( )( ) ( )( ){ }1 1 1

1 1
2 n n n nn njn j n j n

n n j D Z D Z D Z D Z
nδ δ δ

δ

− − −

−

− −

+ −    ∆ = + − + − − −   
   

. 

Define 6β , satisfying 5620 ββ << , to obtain 

( ) ( )












−−−>














∆
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4log2logmaxPr 1
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1
521

1 1
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δβγγγ
δ

δ δ
β
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nnj jn
NnN

H  

( ) ( )












>−−−>














∆
= −

≤≤

−

+−=

−

≤≤
∑

− −

6

5

521

1 1
50

max ,4log2logmaxPr 1

1

1
βδβγγγ

δ

β
δ δ

β
NDNNNN

n
n

n
NnN

n

nnj jn
NnN

H  

( ) ( )












≤−−−>














∆
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≤≤

−

+−=

−

≤≤
∑

− −

6

5

521

1 1
50

max ,4log2logmaxPr 1

1

1
βδβγγγ

δ

β
δ δ

β
NDNNNN

n
n
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NnN

n

nnj jn
NnN

H  






 >≤ −

≤≤

6

50
maxPr β
β

NDn
NnN

H  

( ) ( )












≤−−−>














∆
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≤≤

−

+−=

−
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∑
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6

5

521

1 1
50

max ,4log2logmaxPr 1

1

1
βδβγγγ

δ

β
δ δ

β
NDNNNN

n
n

n
NnN

n

nnj jn
NnN

H .  (11) 

The result of Dvoretzky, Kiefer, and Wolfowitz 1, P.60 provides 
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 0maxPr 6

50
→





 > −

≤≤

β
β

NDn
NnN

H  as ∞→N , (12) 

where 5620 ββ << . Set up δ  to satisfy 60 βδ <<  and γδ <−1 . In (11), under the event 

{ }6

5
max n

N n N
D N

β

β−

≤ ≤
≤ , we have 

( )δβδδ
δ

δ δ
β

−−−

+−=

−

≤≤
=






 −−≤















∆∑
− −

11

1

1
6

1 1
5 2

1log2logmax NONN
n

nn

nnj jn
NnN

, 

since ( ) 66
1 2211 βδβδ
δ

−−−−− −≥−−+≥∆ − NnNnjnnjn
. Considering (11), since 

( ) ( ) ( )γδβγγγ NONNNN =−−− − 4log1521 , we conclude that 

( ) ( )






−−−>














∆
−

+−=

−

≤≤
∑

− −

,4log2logmaxPr 1

1

1
521

1 1
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δβγγγ
δ

δ δ
β

NNNN
n
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nnj jn
NnN
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            } 0max 6

5
→≤ −

≤≤

β
β

NDn
NnN

 as ∞→N .  (13) 

By virtue of (12) and (13), we have 

( ) ( ) 04log2logmaxPr 1

1

1
521

1 1
50

→












−−−>














∆
−

+−=

−
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∑

− −
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δ

δ δ
β
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n
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NnN

H  as ∞→N . 

This leads to 

 02logmaxPr 21

1 1
0

1

1

1
→













−−>














∆
= ∑

+−=

−

≤≤ − −

γγγ
δ

δ δ

NNN
n

nC
n

nnj jn
NnH  as ∞→N . (14) 

Applying the results (6), (10) and (14) to the Inequalities (1) and (2), we obtain 
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( ) ( )
02minlogmaxPr

110
→













>










∆∏
=

≤≤≤≤

γN
n

mn

j jm
nbmnaNnH  as ∞→N . 

For example, one can set up 15.0=δ , 95.0=γ , 9.021 == γγ , 5.01 =β , 2.02 =β , 7.03 =β , 

3.04 =β , 6.05 =β , 25.06 =β  to hold the requirements regarding the values of the parameters 

,δ  γ , 1γ , 2γ , 1β , 2β , 3β , 4 ,β  5β , and 6β  stated above. This completes the proposition 1’s 

statement under 0H . 

Consider 
( ) ( )

( )






 >





 ∆∏ =

−

≤≤≤≤

γNnmn

j jmnbmnaNnH 1
1

1
2minlogmaxPr

1
 as ∞→N . We have that 

( ) ( )
( )

( ) ( )
( ) 





 ∆≥





 ∆ ∏∏ =

−

≤≤=

−

≤≤≤≤

N

j jmNbmNa

n
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Nmnm

1
1

1
1

1
2minlog2minlogmax  implies 

 
( ) ( ) ( ) ( ) 


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
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





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≥


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
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
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N
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111

2minlogPr2minlogmaxPr
11

. (15) 

By virtue of Proposition 1 presented in Vexler et al., 2 under 1H , we have 

( ) ( )

( )
( )

1

1

1

1 1

1 2log min log 0.5 0.5
N p

H

a N m b N j jm H

f Zm E
N N f Z≤ ≤

=

    − →− +       ∆      
∏  as ∞→N , 

for all 410 << δ , where ( )
1Hf z  is the density function of 1Z  under 1H . Then 

( )
( )

( )
( ) 05.05.0log5.05.0log

1

1

1

1

1

1

1

1

1

1
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

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













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




















 −
+−
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Zf

E
Zf
Zf

E
H

H
H

H

H
H . 

This leads to 
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( ) ( )

12minlogPr
1

1
→













>










∆∏
=

≤≤

γN
N

mN

j jm
NbmNaH  as ∞→N . (16) 

Using the results of (15) and (16), we complete the proof. 

 

2. R CODES USED IN SECTIONS 2-3 

2.1 R code to calculate critical values of the proposed test 

####################################################### 

######R code to calculate critical values of the proposed test##### 

####################################################### 

# The number of the Monte Carlo simulations 

MC<- 75000 

# The fixed alpha value 

alpha<- 0.05 

# The maximum sample size N 

N<- 15  

# The value of parameter delta 

delta<- 0.1 

Vmc<- array() 

for(mc in 1:MC){  

x<- rnorm(N) 

Vmc_n<-array() 

# The loop is used to calculate values of the proposed test statistic for sample sizes n=4,…,N. 

for(n in 4:N){     
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Vnm<-array() 

z<- x[1:n] 

sz<- sort(z) 

#Define values of m in (2.6)  

m <- c(round(n^(delta+0.5)):min(c(round((n)^(1-delta)),round(n/2)))) 

delta_nm<-array() 

#The function is used to calculate jm∆  at (2.6) 

 Vnm_function<- function(m){ 

 L<-c(1:n)- m 

 LL<-replace(L, L <= 0, 1 )  

 U<-c(1:n)+ m 

 UU<-replace(U, U >= n, n)   

 zL<-sz[LL] 

 zU<-sz[UU] 

 for (i in 1:n){ 

delta_nm[i]<- (sum(sz<=zU[i])+sum(-sz<=zU[i])-sum(sz<=zL[i])-sum(-sz<=zL[i]))/(2*n)}  

delta_nm<- replace(delta_nm,delta_nm==0,1/n)  

Vnm<- log(prod(m*(2*n-m-1)/(n^2*delta_nm))) 

 return(Vnm)} 

Vnm<- sapply(m,Vnm_function) 

# Calculate the value of the test statistic nV  in (2.6) 

Vmc_n[n-3]<- min(Vnm)} 

Vmc[mc]<- max(Vmc_n)} 

# Obtain ,Ncα  of the proposed test 

quantile(Vmc,1-alpha) 
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2.2 R code to calculate statistical powers and ASNs of the proposed test 

##################X=U(1,2),Y=LogNormal(0,1)###################### 

# Define values of delta, N, number of the MC simulations, the critical value corresponding  

#to alpha=0.05 

delta<- 0.1 

N<- 15 

MC<- 100000 

CV<- 4.288 

N_stop<-array() 

no_reject<-0 

for(mc in 1:MC){ 

n=4 

x=runif(N,min=1,max=2)-rlnorm(N,meanlog=0,sdlog=1) 

while(n<=N){ 

Vnm<-array() 

z<- x[1:n] 

sz<- sort(z) 

m <- c(round(n^(delta+0.5)):min(c(round((n)^(1-delta)),round(n/2)))) 

delta_nm<-array() 

Vnm_function<- function(m){ 

 L<-c(1:n)- m                 

 LL<-replace(L, L <= 0, 1 )   

 U<-c(1:n)+ m                 

 UU<-replace(U, U >= n, n)    

 zL<-sz[LL]         
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 zU<-sz[UU]         

 for (i in 1:n){       

delta_nm[i]<- (sum(sz<=zU[i])+sum(-sz<=zU[i])-sum(sz<=zL[i])-sum(-sz<=zL[i]))/(2*n) } 

delta_nm<- replace(delta_nm,delta_nm==0,1/n) 

 Vnm<- log(prod(m*(2*n-m-1)/(n^2*delta_nm))) 

return(Vnm)} 

Vnm<- sapply(m,Vnm_function) 

if(n<=N & min(Vnm)>=CV){ 

 N_stop[mc]<- n 

 no_reject<- no_reject+1 

 break}else if(n==N & min(Vnm)<CV){ 

N_stop[mc]=n} 

n=n+1}} 

#obtain the statistical power and ASN  

print(c(no_reject/MC, mean(N_stop))) 
 

3. THE ADDITIONAL MC RESULTS 

Table S1. The MC powers and ASNs of the proposed sequential DBEL (Seq_DBEL) test and 

the SSRT at the significance level 05.0=α . 

      Seq_DBEL SSRT 
XF  YF   N Power ASN Power ASN 

N(0,1) Cauchy(1,1) 25 0.314 21 0.404 21 

  50 0.603 37 0.656 35 

  75 0.846 45 0.833 42 
Exp(1) LogN(0, 22 ) 25 0.287 23 0.269 23 

  50 0.704 37 0.502 40 

  75 0.951 42 0.701 51 



17 
 

Beta(0.7,1) Exp(2) 25 0.059 24 0.054 25 

  50 0.087 48 0.062 49 

  75 0.215 70 0.073 72 
N(0,1) U(-1,2) 25 0.272 22 0.321 22 

  50 0.543 39 0.57 38 

  75 0.718 50 0.756 48 
U(1,2) LogN(0,1) 25 0.168 23 0.162 23 

  50 0.698 40 0.222 45 

  75 0.981 44 0.286 64 
Gamma(2,4) Gamma(2,5) 25 0.118 24 0.131 24 

  50 0.187 46 0.220 45 
  75 0.286 66 0.312 65 
Gamma(2,3) Gamma(3,2) 25 0.944 13 0.969 13 

  50 1 14 1 15 
    75 1 15 1 15 

Exp(1) Beta(0.7,1) 25 0.671 19 0.645 19 
  50 0.977 24 0.93 26 
  75 1 25 0.989 28 

Exp(1) U(-1,2) 25 0.249 23 0.268 23 
  50 0.565 39 0.497 40 
  75 0.853 47 0.688 51 
LogN(-0.5,1) Beta(0.7,1) 25 0.594 19 0.581 20 

  50 0.953 26 0.885 28 
  75 0.999 27 0.977 31 

Chisq(1) U(1,2) 25 0.605 19 0.617 18 
  50 0.986 24 0.877 26 
  75 1 25 0.968 29 
Gamma(0.9,1) Beta(0.9,1) 25 0.316 22 0.29 23 
  50 0.774 35 0.559 38 
  75 0.985 39 0.746 49 

Beta(0.7,1) U(-1,1) 25 0.698 18 0.691 18 
  50 0.975 23 0.952 24 
    75 0.999 24 0.994 26 

 

3. 
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Figure S1. The scatterplot 'pre-CHX treatment measurements' vs. 'post-CHX treatment 

measurements'. 
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