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ABSTRACT 

Many clinical and biomedical studies evaluate treatment effects based on multiple biomarkers 

that commonly consist of pre- and post-treatment measurements. Some biomarkers can show 

significant positive treatment effects while other biomarkers can reflect no effects or even 

negative effects of the treatments, giving rise to a necessity to develop methodologies that may 

correctly and efficiently evaluate the treatment effects based on multiple biomarkers as a whole. 

In the setting of pre- and post-treatment measurements of multiple biomarkers, we propose to 

apply a receiver operating characteristic (ROC) curve methodology based on the best 

combination of biomarkers maximizing the AUC-type criterion among all possible linear 

combinations. In the particular case with independent pre- and post-treatment measurements, we 

show that the proposed method represents the well-known Su and Liu’s (1993) result. Further, 

proceeding from derived best combinations of biomarkers’ measurements, we propose an 

efficient technique via likelihood ratio tests to compare treatment effects. We show an extensive 

Monte Carlo study that confirms the superiority of the proposed test in comparison of treatment 

effects based on multiple biomarkers in a paired data setting. For practical applications, the 

proposed method is illustrated with a randomized trial of chlorhexidine gluconate on oral 

bacterial pathogens in mechanically ventilated patients as well as a treatment study for children 

with ADHD and severe mood dysregulation (SMD). 
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1. Introduction  

Biomarkers have been important tools in disease diagnosis, drug development and research. In 

the area of drug development, biomarkers’ measurements can be applied to reflect drug effects, 

and thus are often used to compare different treatment groups. Biomarkers can show treatment 

effects in different magnitudes or even different directions, necessitating methodologies to 

examine the treatment effects based on multiple biomarkers jointly. Many studies compare 

treatment effects based on multiple biomarkers’ measurements of independent case group and 

control group. This paper targets to propose methodologies that can correctly and efficiently 

evaluate the treatment effects based on pre- and post-treatment measurements of multiple 

biomarkers as a whole, and to further develop an efficient statistical testing methodology to 

compare independent treatment groups with paired data. One of the motivating examples in this 

paper is as follows. The chlorhexidine gluconate on oral bacterial pathogens study was 

conducted on patients admitted to the 18-bed trauma intensive care unit (TICU) of the Erie 

County Medical Center (ECMC) where patients were mechanically ventilated. These patients 

were of particular interest since they have a high risk of ventilator-associated pneumonia. While 

it is true that these patients are ill and thus may be more susceptible to infection, they also have 

the greatest need for prevention of infection. A randomized, double-blind, and placebo-

controlled clinical trial tested oral topical 0.12% chlorhexidine gluconate (treatment group) and 

placebo with vehicle alone (control group), applied twice a day by staff nurses. Quantitation of 

colonization of the oral cavity by respiratory pathogens on left teeth and right teeth was 

measured. The aim of the study was to determine the best regimen of oral hygiene in the TICU to 
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reduce oral colonization by potential respiratory bacterial pathogens (PRPs). In this paper, we 

propose to combine the oral plaque quantification on left teeth and right teeth to maximize an 

AUC-type quantity based on pre- and post-treatment observations in the evaluation of the 

treatment effect on oral bacterial pathogens in mechanically ventilated patients. 

For biomarkers whose values are measured on a continuous scale, its diagnostic performance 

in identifying diseased subjects is commonly assessed via receiver operating characteristic (ROC) 

curves, e.g., Pepe (2006) and Vexler (2008). Suppose values of a biomarker from the diseased 

population     and the healthy population     are independent and identically distributed 

samples from two different distributions with cumulative distribution functions      and     , 

respectively. A ROC curve plots sensitivity (true positive rate,         versus one minus 

specificity (true negative rate,         for various values of the threshold  . The mathematical 

formula is                   , where        . The area under the ROC curve (AUC) is 

a common index of the diagnostic performance of a biomarker. Bamber (1975) noted that the 

area under this curve is equal to           

Some recent biostatistical literature (e.g., Tian, 2008; Tian et al., 2012; Hauck et al., 2000) 

proposes to consider the quantity          in the context of a generalized treatment effect, 

when   and   denote continuous outcome variables for treatment arm and control arm, 

respectively. Hauck et al. (200) introduced the use of          in clinical trials as a statistical 

measurement of describing treatment effects, namely, the generalized treatment effect, and 

derived a method for confidence interval estimation of          with normally distributed 

outcomes. Tian (2008) compared large sample approach, a generalized variable approach and a 

bootstrap approach for confidences interval estimation of generalized treatment effects in linear 

models. Tian et al. (2012) proposed to utilize the generalized variable method for testing equality 
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of generalized treatment effects. 

The standard ROC methodology as well as generalized treatment effects mentioned above is 

commonly considered with respect to case-control studies. In the case of independent 

populations, e.g., cases and controls, various approaches have been proposed to evaluate and 

compare the performance of bivariate and/or multivariate biomarkers. McClish (1987) and 

DeLong et al. (1988) proposed comparisons of diagnostic biomarkers based on the difference of 

areas under ROC curves. Wieand et al. (1989) proposed statistics for comparisons of ROC 

curves based on a weighted average of sensitivities. Considering the combination of multiple 

biomarkers as a single composite score, Pepe and Thompson (2000), as well as Vexler et al. 

(2006) have considered empirical solutions to the optimal linear combinations of biomarkers in 

the context of nonparametric maximizations of corresponding AUCs.  

Su and Liu (1993) derived the optimal linear combinations yielding the largest area under the 

ROC curves if the values of the biomarkers in the diseased (case) and the non-diseased (control) 

population both follow multivariate normal distributions. We will extend to consider the 

generalized treatment effect of optimally combined biomarkers in a more general situation with 

paired data (  and   are correlated). In this paper, we consider the best linear combination of 

pre- and post-treatment measurements of biomarkers in the sense that the AUC-type measures of 

treatment effects of this combination is maximized among all possible linear combinations.  In a 

particular case, when pre- and post-treatment biomarkers’ measurements are independent, the 

proposed method corresponds to the well-addressed result of Su and Liu’s (1993). 

Additionally in this paper, to compare effects of treatments between two independent groups 

based on pre- and post-treatment measurements of groups of biomarkers, we propose a test 

statistic using the concept of the efficient maximum likelihood ratio methodology, which carries 
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out group comparisons of AUC-type measures of the optimal linear combination of biomarkers. 

Primarily, the proposed approach is applied to a randomized trial of chlorhexidine gluconate 

on oral bacterial pathogens in mechanically ventilated patients. Also, we demonstrate an 

excellent applicability of the proposed method to any relevant multiple outcomes beyond 

biomarker studies via a treatment study for children with ADHD and severe mood dysregulation 

(SMD). ADHD is the most commonly diagnosed behavioral disorder of childhood. Most 

children with ADHD also have at least one other developmental or behavioral problem. They 

may also have a psychiatric problem, such as depression or bipolar disorder. Severe mood 

dysregulation is a syndrome defined to capture the symptomatology of children whose diagnostic 

status with respect to bipolar disorder is uncertain, that is, those who have severe, nonepisodic 

irritability and the hyperarousal symptoms characteristic of mania but who lack the well-

demarcated periods of elevated or irritable mood characteristic of bipolar disorder. For each child 

enrolled in the study, Depression Rating Scale (CDRS) scores and Young Mania Rating Scale 

(YMRS) scores were taken at the baseline and the endpoint. The objective of the study was to 

compare total treatment effects based on pre- and post-treatment measurements of CDRS-R and 

YMRS between the experimental group-based therapy program and the community psychosocial 

treatment (i.e., control). For more related research in this context, see Vexler et al. (2012). In this 

paper, we propose to combine the measured values maximizing an AUC-type quantity based on 

pre- and post-treatment observations in evaluation of treatment effects in the study for children 

with ADHD and SMD. 

This paper is organized as follows. In Section 2, we define the AUC-type measure and the 

estimation of the best linear combination of biomarkers. The maximum likelihood ratio test is 

proposed in Section 2 as well. Section 3 shows an extensive Monte Carlo study for the proposed 



6 
 

methods. Section 4 illustrates applications to a randomized trial of chlorhexidine gluconate on 

oral bacterial pathogens in mechanically ventilated patients as well as a treatment study for 

children with ADHD and severe mood dysregulation (SMD). In Section 5, we conclude the 

article with remarks. 

2. Methods  

When distributions of two independent populations, say, case and control, are compared based 

on measurements of multiple biomarkers, it is desirable to combine the measurements of 

different biomarkers (e.g., Su and Liu, 1993), since markers usually represent different aspects of 

diseases. Using combined scores of biomarkers can increase the diagnostic accuracy of the set of 

medical tests. Commonly, biomarkers’ values are proposed to be combined with respect to the 

maximization of AUCs (e.g., Vexler et al., 2006; Liu et al., 2011). In this paper, we derive best 

linear combinations of pre- and post-treatment measurements of biomarkers. The likelihood ratio 

test is used to compare two treatment groups (e.g., case and control) based on the AUC-type 

criterion computed with respect to the best linear combinations of biomarkers’ values.  

2.1 Best linear combination 

Without loss of generality and with respect to our practical examples, suppose two biomarkers 

involved in a study to analyze treatment effects. Let     and     be the pre- and post-treatment 

measurements of one biomarker, respectively, with respect to the  -th     ,  ,     patient for a 

certain treatment. Let     and     be the pre- and post-treatment measurements of another 

biomarker, respectively, with respect to the  -th      ,  ,    patient. Assume that 

   ,    ,    ,     
  (here T stands for the transpose operation) follows a multivariate normal 

distribution with the mean vector        
,     

,     
,     

   and the covariance matrix    

     ,      ,        To represent a simple measure of treatment effects, we are 
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interested in reducing dimensionality by constructing an effective linear combination of 

biomarkers with values  s and  s. This implies that we derive certain optimal linear 

coefficients     ,     so that for groups of markers’ values     ,     and     ,    , the one-

dimensional random variables              and              can be presented. This 

linear combination of measurements of biomarkers dominates all the other possible linear 

combinations in the sense that it provides a maximum of the AUC-type measure            

for all    and   . Thus, the optimal       
 ,   

    maximizes the AUC-type measure, denoted 

by  , where 

                                                            

over all possible values of    and   , i.e.,    
 ,   

            ,   
    ,    . 

Under the assumption of multivariate normality of the biomarkers’ measurements distribution, 

    ,    ,   ,        ,   ,   ,    
  follows the normal distribution with mean             

and variance     
               

  , where 

       
    

 ,        
    

, 

and 

               ,                   ,                . 

Then, the corresponding AUC-type measure has the form of  

 ( 
           

√    
               

  
) ,                                                          

where   is a standard normal cumulative distribution function. The best linear combination can 

be defined by maximizing the AUC-type measure, and obtaining values of    
 ,   

   shown in the 

following proposition. 

    Proposition 2.1.1.  The best linear combination coefficients    
 ,   

   are proportional to 
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    ,     (
           

          
) =              ,             . 

The proof is shown in the Appendix.  

Given the best linear combination derived in Proposition 2.1.1, the maximized AUC-type 

measure has the form of  

 (
     

        
            

√    
     

       
     

       
     

       
     

                    
        

)           

If biomarkers are mutually independent, that is,      ,     and      ,     are 

independent, the best linear combination coefficients are 

   
 ,   

       ,     (
           
            

), 

that is, proportional to the weighted change in the mean vector        ,        . 

In a special case of independent pre- and post-treatment measurements of biomarkers, which is 

an analogy to the statement of a case-control study, we have the same result as that proposed by 

Su and Liu (1993). The result is formalized in the following proposition. 

Proposition 2.1.2. If pre- and post-treatment measurements are independent for both markers, 

that is,    is independent of   , and    is independent of   , the best linear combination 

coefficients are    
 ,   

                             . Thus,    
 ,   

           

     
  (          ), where  

     (   
,    

)
 
,       (   

,    
)
 
,      (

        

        
),       (

        

        
). 

The corresponding proof is outlined in the Appendix. 

Thus, we propose to use the maximized AUC-type measure in the context of the best linear 

combinations to depict the total treatment effects based on pre- and post-treatment measurements 

of biomarkers. The total treatment effect                         has the value of    . 



9 
 

2.2 Maximum likelihood ratio tests 

In this section, we propose the maximum likelihood ratio test for comparing treatments’ effects 

based on best linear combinations of pre- and post-treatment measurements of biomarkers. To 

this end, we modify the technique proposed in Vexler et al. (2008). 

Let      represent the pre-       and post-treatment       measurements of a biomarker 

(X) for the  -th     ,  ,     patient in the  -th group,     for the new therapy group, and 

    for the control group, respectively. Likewise, let      represent the pre-       and post-

treatment       measurements of another biomarker (Y) for the  -th     ,  ,     patient in 

the  -th group,     for the new therapy group, and     for the control group, respectively. 

Assume biomarkers’ measurements for the new therapy group          ,     ,     ,      
  

(    ,  ,     and biomarkers’ measurements for the control group          ,     ,     , 

     
      ,  ,     follow a multivariate normal distribution with the mean vector    

    ,    ,    ,     
                 ,        ,        ,         

  and with the covaria-

nce matrix     ((          )(          )
 
)        ,      ,     ,   ,  . 

Let    and    denote the maximized AUC-type measures for the new therapy group and the 

control group, respectively. In this section, for the comparison of the treatment effects for the 

new therapy group and the control group based on paired observations, we formally consider 

testing hypothesis, 

         vs.         .                                                         

    In Section 2.1, we showed that the maximized AUC-type measures in both groups have the 

form of    . Thus,     (
  

√  
) can be expressed as a function of    and   , where 
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                                           , 

                                            
             

             

                          
             

                             

          
            

                                   
       

    
                  

                                              

                                                 . 

Therefore the hypothesis setting     is equivalent to  

    
  

√  

 
  

√  

           
  

√  

 
  

√  

                                                         

Under the null hypothesis,     can be represented as a function of the remaining set of 

parameters, say,               ,    ,    ,   ,   ,    , for a certain function  . We show the 

exact form of the function   in the Appendix. Thus, in a simple case, when all the parameters are 

known, we can utilize the classical most powerful likelihood ratio method for testing 0H . To 

this end, the likelihood functions under    and    can be presented correspondingly as  

        ,   ,   ,     ∏          ,    

   , ,  

∏  (       ,   )

   , ,  

, 

         ,    ,    ,   ,   ,     ∏          ,    ,    ,     
 ,    

   , ,  
   , ,  

 (       ,   ), 

where      denotes the multivariate normal density function known as 

      ,          | | 
 
   

 
 
              

  

Therefore the classical likelihood ratio test-statistic is 

  ∏
         ,    

         ,    ,    ,      ,    
   , ,  
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When the parameters are unknown, we can apply the maximum likelihood ratio to be the test 

statistic 

  

   
  ,   ,   ,   

     ,   ,   ,    

   
   ,    ,    ,   ,   ,   

      ,    ,    ,   ,   ,    
 

 

   
  ,   

∏          ,       , ,  
   
  ,   

∏  (       ,   )   , ,  

   
   ,    ,    ,   ,   ,   

∏          ,    ,    ,      ,       , ,  
   , ,  

 (       ,   ) 
                                 

The maximum likelihood estimators under    have closed form solutions. The maximum log-

likelihood under    is 

                    
  

 
   | ̂  |  

  

 
   | ̂  | ,                                        

where 

 ̂  
 

  
∑(    

 

  
∑   

  

   

)(    
 

  
∑   

  

   

)

   

   

, 

   ̂  
 

  
∑(    

 

  
∑   

  

   

)(    
 

  
∑   

  

   

)

 

 

  

   

 

Under   , in order to calculate the maximum likelihood, we carried out the numerical approach 

without specifying the closed forms of the estimators of the unknown parameters. 

Thus, we reject the null hypothesis if     , where the threshold    corresponds to Type I 

error  . Following the Wilks’ Theorem (e.g., Lehmann and Romano, 1997), under    , the 

statistic       asymptotically has a   
  distribution. Thus, the threshold    can be easily obtained 

from           , as   ,      . Moreover, the proposed test is asymptotically locally 

most powerful, e.g., see Choi et al. (1996). 

Remark 1. Numerical calculations. Note that, applying statistical software such as R, SPlus, 
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etc., allows us to calculate the minimization of      (      ,    ,    ,   ,   ,    )  without 

using closed forms of the estimators of the unknown parameters. The basic procedure “optim” in 

R (2012) can be carried out to minimize the negative log-likelihood under    and the procedure 

“multiroot” helps finding this minimization. The related R codes are available from the authors 

upon request.  

Remark 2. Transformed normal approach. In the case that the normal assumptions are not 

satisfied, for example, when biological mechanisms induce log-normal distributions of 

biomarkers (2001), we can fit the data to a Box-Cox power transformation model (1964) to better 

achieve normality of biomarkers. To be more specific, for the  -th (   ,  ,     measurement 

of  -th (   ,  ) group          ,     ,     ,      , the Box-Cox power transformed values 

are defined as    
     

      
     

,     
     

,     
     

,     
     

 , where 

    
     

 {
    

     

   
      

               
,    ,  ,  and      

     
 {

    
     

   
      

               
,    ,  . 

The power coefficients    ,    ,     and     can be estimated by maximizing the likelihood  

   
  ,   ,              ,    

∏  (   
     

    ,   )   , ,  
. 

Then the normality-based best linear combinations of biomarkers and the maximum likelihood 

ratio test can be used on the transformed data.  

3. Simulation study 

In this section, Monte Carlo simulations are conducted to examine the power properties of the 

proposed tests under different scenarios. We also compare AUC-type measures between the 

proposed optimal combination case and only one biomarker case. 

3.1 Power and Type I error 

To study the power and the Type I error of the proposed test, 2,000 samples of biomarkers’ 
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measurements for a new therapy group      ,     ,     ,      
  (   ,  ,     of sample size of 

   were generated from multivariate normal distribution with the mean vector    and the 

covariance matrix   , and biomarkers’ measurements for a control group      ,     ,     , 

     
      ,  ,     of sample size of    were generated from multivariate normal distribution 

with the mean vector    and the covariance matrix   , where 

          ,    ,        ,          , 

          ,    ,        ,          . 

We consider the unequal covariance case, where 

   (

                     
                     
                     

       
       
       

                            

) ,                                   

   (

       
       
      

                   
                   
                    

                          

)  

and the equal covariance case with the common covariance matrix as shown in    . These 

parameters were chosen to reflect a real data example with values close to those in the treatment 

study for children with ADHD and severe mood dysregulation (SMD) introduced in Section 1. 

TABLE 1 HERE 

The values of     and     are shown from Table 1 to Table 4, which are chosen such that 

difference in the maximized AUC-type measures between two groups are set to be 0, 0.1 or 0.2, 

i.e.,        ,     or    , where    and    denote the maximized AUC-type measures in the 

context of best linear combinations of biomarkers’ values for the new therapy group and the 

control group, respectively. We consider following scenarios:        ,        ;        , 

       ;        ,         as well as        ,         with different sample sizes 
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with        ,       . 

TABLE 2 HERE 

In the same setting of parameters, Table 1 compares the Monte Carlo (MC) powers of the 

proposed MLR test in the context of the optimally combined two biomarkers to the powers using 

one biomarker alone in the equal covariance case. Table 2 depicts type I errors of the proposed 

MLR test with the best linear combination of two biomarkers in the equal covariance matrix case. 

With the same setting of parameters, Table 3 compares the Monte Carlo powers of the proposed 

MLR test in the context of the optimally combined two biomarkers to the powers using one 

biomarker alone in the unequal covariance case. Table 4 depicts type I errors of the proposed 

MLR test with the best linear combination of two biomarkers in the unequal covariance case  

When the difference in AUC-type measures between two groups and the sample size increases, 

the MLR tests provide increased powers as anticipated in both equal and unequal covariance 

matrix cases. Table 1 and Table 3 show that the powers of the proposed test with the best linear 

combinations of two biomarkers are very high when the sample size is large enough in both 

equal and unequal covariance cases. The power is close to be 1 when the difference in the AUC-

type measures between two groups is 0.2 and the sample size in each group is 300. Compared to 

the power of the proposed test with optimal combinations, powers with one biomarker alone are 

much smaller. The type I errors of the MLR tests are well controlled even for relatively small 

sample sizes, say, 30 in each group.  

TABLE 3 HERE 

3.2 AUC-type measures 

To compare AUC-type measures between the proposed optimal combination case and only one 

biomarker case, 20,000 samples of biomarkers’ measurements    ,    ,    ,     
 of various 
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sample size of        ,   ,    ,      were generated from multivariate normal distribution 

with the mean vector   and the covariance matrix  . 

TABLE 4 HERE 

We consider following scenarios:             ,        ,        ,           and the 

covariance matrix   as shown in    ;             ,       ,        ,           and the 

covariance matrix   as shown in     with 16.6389 in the   ,    element and   ,    element 

instead. The best linear combination of measurements of biomarker X and biomarker Y is 

proportional to   ,          in scenario   and   ,          in scenario  . The AUC-type 

measure associated with the best linear combination has the form of    , which is 0.8. The AUC-

type measure for X alone corresponds to equation     where     , and     , while the 

AUC-type measure for Y alone corresponds to the case where     , and     . Table 5 

shows the theoretical AUC-type measures and values based on 20,000 simulations as well as the 

Monte Carlo (MC) variance of the simulated AUC-type measures. In the scenario  , the AUC 

type measure for X alone appears to be similar to that for the best linear combinations, 

suggesting that Y, in fact, adds little to the discriminating capacity of X. In the scenario  , it is 

observed that the optimal combination provides substantially better discrimination than does X 

alone or Y alone. When the sample size   is large, the simulated AUC-type measures with small 

variability are almost exactly the theoretical values as anticipated. 

TABLE 5 HERE 

4. Applications to data 

In this section, we exemplify the proposed method with data from two clinical studies briefly 

described in the introduction.  

4.1 Oral colonization data 
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A randomized, double-blind, placebo-controlled clinical trial tested oral topical 0.12% 

chlorhexidine gluconate         or placebo        , applied twice a day by staff nurses. 

The paired data were constituted by two measurements of plaque on the denture surface taken 

from the same subjects at the baseline (day 0) and the endpoint (day 4). The goal was to 

determine the best regimen of oral hygiene in the TICU based on the mean plaque quantification 

for the sets of left teeth (upper left first bicuspid, lower left first molar, and lower left central 

incisor) and right teeth (the upper right first molar, upper right central incisor, and lower right 

first bicuspid). For the treatment group, the best linear combination of right teeth scores and left 

teeth scores is proportional to (5.000, 1), leading to the maximized AUC-type measure of 0.7687 

The optimized AUC-type measure is higher the AUC-type measure of 0.7677 with the right teeth 

scores alone and the AUC-type measure of 0.7456 with the right teeth scores alone. For the 

control group, the best linear combination of right teeth scores and left teeth scores is 

proportional to (-2.6070, 1), leading to the maximized AUC-type measure of 0.5888. The 

corresponding p-value of the hypothesis test of     is 0.042, indicating the rejection of the null 

hypothesis of ‘lack of treatment effect’ at the 0.05 significance level. The decontamination of the 

oral cavity with chlorhexidine improved the oral hygiene among mechanically ventilated patients 

in TICU, potentially indicating reduction of potential respiratory pathogens. 

4.2 ADHD data 

The attention deficit-hyperactivity disorder (ADHD) and severe mood dysregulation (SMD) data 

were produced in Center for Children and Families at University at Buffalo to examine the 

feasibility and efficacy of a group-based therapy program for children with ADHD and SMD. A 

novel group-based therapy program was studied to treat ADHD and mood problems since most 

ADHD treatments have not designed to help mood problems. Children ages 7 to 12 with ADHD 
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and SMD were randomly assigned to receive either an 11 week experimental group-based 

therapy program for children and parents (treatment group,      ), or to community 

psychosocial treatment (control group,      ). 

FIGURE 1 HERE 

    Clinicians rate Children’s Depression Rating Scale-revised version (CDRS-R) scores and 

Young Mania Rating Scale (YMRS) scores. The CDRS-R consist of 17 clinician rated items, 

with 14 items based on the child’s self-report or reports from the parents or teachers and 3 items 

based on the child’s nonverbal behavior during the interviews. The YMRS is an 11-item, 

multiple-choice diagnostic questionnaire which psychiatrists use to measure the severity of 

manic episodes in patients. The paired data were constituted by two measurements taken from 

the same subjects at the baseline (week 0) and the endpoint (week 11). The objective is to 

compare treatment effects with respect to CDRS-R and YMRS between the treatment group and 

the control group. Figure 1 displays AUC-type measures with linear combinations 

  YMRS+  CDRS-R versus the ratio     ⁄  for     ⁄         for the treatment group. For 

ease of presentation, the plot displays AUC-type measures versus     ⁄  when     ⁄    or 

    ⁄    . As can be observed in this plot, the best linear combination of YMRS scores and 

CDRS-R scores is proportional to (0.1076, 1), leading to the maximized AUC-type measure of 

0.9350. The maximized AUC-type measure is higher the AUC-type measure of 0.8449 with the 

YMRS scores alone      ⁄     and the AUC-type measure of 0.9347 with the CDRS-R scores 

alone      ⁄      Similarly for the control group, the best linear combination of YMRS scores 

and CDRS-R scores is proportional to (0.5903, 1), leading to the maximized AUC-type measure 

of 0.8507, which is higher than the AUC-type measure of 0.7455 with the YMRS scores alone 

and the AUC-type measure of 0.8156 with the CDRS-R scores alone. The corresponding p-value 
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of the hypothesis test of     is 0.0085, indicating the null hypothesis of ‘lack of treatment effect’ 

is rejected at the 0.05 significance level. Since larger AUC values indicate better diagnostic 

quality. We conclude the experimental group-based therapy program is better than the 

community psychosocial treatment. 

5. Conclusions 

It is well known that the ROC curve is the most commonly used statistical tool to assess the 

quality of diagnostic biomarkers. In this paper, we constructed best linear combinations of 

biomarkers’ measurements based on correlated data maximizing the AUC-type criterion among 

all possible linear combinations of the biomarker values. In a special case of independent pre- 

and post-treatment measurements of biomarkers, we showed the same result as that proposed by 

Su and Liu (1993). Thus, the proposed method can be applied to both independent data as well as 

paired data. In the context of maximized AUC-type measure, we proposed to use maximum 

likelihood ratio tests to compare treatment effects based on pre- and post-treatment 

measurements of multiple biomarkers. Through the Monte Carlo study, the proposed 

methodology has been confirmed to be very efficient and the proposed test demonstrated 

adequate power properties corresponding to the hypotheses and sample sizes while keeping the 

Type I error under control even with moderate sample sizes. The superiority of the best linear 

combination over one biomarker alone was also verified. The analyses of a randomized trial of 

chlorhexidine gluconate on oral bacterial pathogens in mechanically ventilated patients as well as 

a treatment study for children with ADHD and severe mood dysregulation (SMD) demonstrated 

the fact that the proposed method is relevant to compare treatment groups with correlated 

multiple outcomes and easy to apply.  

Appendix 
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A.1. Proof of Proposition 2.1.1. 

To maximize the AUC-type measures, we calculate first partial derivatives of the function of 

AUC-type measure with respect to    and   . Set      ⁄   , and      ⁄   . The equations 

are equivalent to 

               
                      , 

               
                      . 

Thus, 

  
   , or   

    
                             ,      

   , 

  
   , or   

    
                             ,      

   . 

It can be confirmed that       
 ⁄   , and       

 ⁄   . 

Proof of Proposition 2.1.2. In the special case of independent paired data, that is,         

         . Based on Proposition 2.1.1, we have 

   
 ,   

                ,             . 

By Su and Liu’s result, 

(
  

 

  
 )                  

                  , 

that is, 

(
  

 

  
 )  (          )

  
(          )  (

                

                
)
  

(
   

    

   
    

). 

Thus, we have 

(
  

 

  
 )  (

                 

                 
) (

   
    

   
    

)  (
            

           
). 

It is obvious that the proposed method corresponds to Su and Liu’s result.  

A.2. The form of the function   associating     with    ,    ,    ,   ,   ,    under   . 
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Based on the equation under the null hypothesis 
  

√  
 

  

√  
 and assuming that higher values 

indicate better performance, that is,      combined pre-treatment biomarkers’ 

values combined post-treatment biomarkers’ values , the root of the equation under the null 

hypothesis for     is  

        

(    
                  ((    

                 )  )

 
 
)

              
, 

where 

    
        ,     

    , 

     
                             

                     
             

  

                                                                   . 

    Assuming that lower values indicate better performance, that is,      combined pre-

treatment biomarkers’ values combined post-treatment biomarkers’ values , the root of the 

equation under the null hypothesis for     is  

        

(    
                  ((    

                 )  )

 
 
)
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Table 1 

The Monte Carlo powers of the proposed test with different sample sizes    ,     at the 

expected 0.05 significance level in the equal covariance case. 

Diffe-

rence 

AUCmax    ,     (30,30) (100,100) (300,300) 

0.1 

       , 

        

          , 

           

0.1131
o 

0.1223
* 

0.1342
** 

0.4299
o 

0.2450
* 

0.3320
**

 

0.8867
o 

0.5790
* 

0.6420
**

 

0.1 

       , 

        

           , 

            

0.2300
o 

0.0988
* 

0.1714
**

 

0.5884
o 

0.1968
* 

0.3026
**

 

0.9611
o 

0.3551
* 

0.6019
**

 

0.2 

       , 

        

           , 

           

0.4649
o 

0.1945
* 

0.1762
**

 

0.9600
o 

0.3140
* 

0.3460
**

 

1.0000
o 

0.5899
* 

0.6501
**

 

0.2 

       , 

        

           , 

            

0.8111
o 

0.1932
* 

0.1591
**

 

0.9994
o 

0.3591
* 

0.3082
**

 

1.0000
o 

0.4980
* 

0.6419
**

 

Note: “o” denotes the power of the proposed test with respect to the best linear 

combination of two biomarkers, while “*” denotes the power for one biomarker (X) alone 

based on values of     , and “**” denotes the power for the other biomarker (Y) alone based 

on values of     . 
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Table 2 

The Monte Carlo Type I errors of the proposed test with the best linear combination of 

two biomarkers with different sample sizes    ,     in the equal covariance case. 

AUCmax         (30,30) (100,100) (300,300) 

                  0.0294 0.0431 0.0493 

                   0.0325 0.0524 0.0498 
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Table 3 

The Monte Carlo powers of the proposed test with different sample sizes    ,     at the 

expected 0.05 significance level in the unequal covariance case. 

Diffe-

rence 

AUCmax    ,     (30,30) (100,100) (300,300) 

0.1 

       , 

        

          , 

           

0.0800
o 

0.1518
* 

0.1496
** 

0.2900
o 

0.3620
* 

0.3199
**

 

0.8056
o 

0.6898
* 

0.6479
**

 

0.1 

       , 

        

           , 

            

0.1096
o 

0.1507
* 

0.1794
**

 

0.3425
o 

0.3594
* 

0.3394
**

 

0.9394
o 

0.6723
* 

0.6667
**

 

0.2 

       , 

        

           , 

           

0.2727
o 

0.2479
* 

0.1770
**

 

0.8964
o 

0.4540
* 

0.3193
**

 

1.0000
o 

0.7819
* 

0.6321
**

 

0.2 

       , 

        

           , 

            

0.7436
o 

0.3037
* 

0.1346
**

 

0.9999
o 

0.5778
* 

0.2906
**

 

1.0000
o 

0.8480
* 

0.6600
**

 

Note: “o” denotes the power of the proposed test with respect to the best linear 

combination of two biomarkers, while “*” denotes the power for one biomarker (X) alone 

based on values of     , and “**” denotes the power for the other biomarker (Y) alone based 

on values of     . 
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Table 4 

The Monte Carlo Type I errors of the proposed test with the best linear combination of two 

biomarkers with different sample sizes    ,     in the unequal covariance case. 

AUCmax    ,     (30,30) (100,100) (300,300) 

           

          , 

             
0.0126 0.0485 0.0261 

           

          , 

            

0.0513 0.0521 0.0466 

 

Table 5 

Comparison of AUC-type measure between the proposed optimal combination case and only 

one biomarker case (X or Y alone) 

 AUCoptimal AUCX AUCY 

theoretical value 
0.8000

a 

0.8000
b
 

0.7587
a 

0.6038
b
 

0.5349
a 

0.5340
b
 

n=30    

estimated AUC-type 

measure (MC variance) 

0.8147 (0.0034)
a 

0.8140 (0.0034)
b
 

0.7639 (0.0040)
a 

0.6069 (0.0054)
b
 

0.5355 (0.0057)
a 

0.5354 (0.0056)
b
 

n=100    

estimated AUC-type 

measure (MC variance) 

0.8040 (0.0011)
a 

0.8042 (0.0011)
b
 

0.7598 (0.0012)
a 

0.6042 (0.0016)
b
 

0.5340 (0.0016)
a 

0.5339 (0.0016)
b
 

n=300    

estimated AUC-type 

measure (MC variance) 

0.8014 (0.0004)
a 

0.8013 (0.0003)
b
 

0.7592 (0.0004)
a 

0.6042 (0.0005)
b
 

0.5340 (0.0005)
a 

0.5342 (0.0005)
b
 

Note: “a” denotes the result for scenario   and “b” denotes the result for scenario   with 

the Monte Carlo (MC) variance shown in parentheses. 

 


