
Noname manuscript No.
(will be inserted by the editor)

Optimal Hypothesis Testing: From Semi to Fully Bayes
Factors

Optimal Hypothesis Testing

Albert Vexler · Chengqing Wu · Kai Fun Yu

Received: date / Accepted: date

Abstract We propose and examine statistical test-strategies that are somewhat be-

tween the maximum likelihood ratio and Bayes factor methods that are well addressed

in the literature. The paper shows an optimality of the proposed tests of hypothesis.

We demonstrate that our approach can be easily applied to practical studies, because

execution of the tests does not require deriving of asymptotical analytical solutions re-

garding the type I error. However, when the proposed method is utilized, the classical

significance level of tests can be controlled.

Keywords Likelihood ratio · Maximum likelihood · Bayes factor · Most powerful ·
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1 Introduction

Testing statistical hypotheses probably has a much longer history than it appears. Our

modest attempt in the search notes that Karl Pearson (1900) used significance testing

for a simple multinomial hypothesis. Ronald A. Fisher had tremendous contributions

in this area of hypothesis testing; see for example Fisher (1925). The statistical hy-

pothesis testing as we know it was mainly due to the important work of Jerzy Neyman

and Egon Pearson who laid down the foundation and the formulation. In a series of
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papers, starting perhaps in 1928, Neyman and Pearson clearly formulated the classical

hypothesis testing problem and obtained very far reaching results which established

this area as an important branch of statistical inference. Subsequently many other sta-

tistical giants keep making profound contributions, making this paradigm even more

important in the statistical discipline. An excellent account can be found in Lehmann

and Romano (2005).

It should also be noted that there has been a huge literature on the advocation and

on the criticism of the Neyman Pearson formulation of statistical hypothesis testing.

The present paper is not to add to the controversies by extolling the virtues or detract-

ing from this classical foundation. We are here to note some difficulty in this classical

formulation of statistical hypothesis testing, especially in the case when both the null

hypothesis and the alternative hypothesis are composite. We propose an approach

which bridges the classical case and the case of the fully Bayes factor. (Marden(2000)

has summarized the Bayes approach in the context of hypothesis testing. Section 2

explains the Bayes factor in detail. Among others, the Type I error of tests based on

Bayes Factor is difficulat to be controlled, as noted in Berger (1993).) In the following

sections we shall give details of an approach we shall call the semi-Bayes approach,

and indicate that in some special cases, it reduces to the classical Neyman Pearson

statistical hypothesis testing and in other special cases, it becomes a fully Bayes factor

approach. This can be viewed as a compromise between the two schools of thoughts.

Some examples will be given. A Monte Carlo simulation study will supplement the

theoretical results.

2 Stating the Problem

Let the following assumptions hold. A test decision is based on data {X1, . . . , Xn} from

the joint density function f(x1, . . . , xn) which is known to belong to a parametric class

{f(x1, . . . , xn|µ, η), µ ∈ Ω1 ⊆ Rq, η ∈ Ω2 ⊆ Rd}. We want to test the null hypothesis

H0 : (µ, η) ∈ Θ0 = {(µ0, η) : η ∈ Ω2}
versus the alternative

HA : (µ, η) ∈ ΘA = {(µ, η) : µ 6= µ0, η ∈ Ω2} = {Ω1 ×Ω2}\Θ0,

where we shall assume that µ0 is known and fixed.

The maximum likelihood method (or the likelihood ratio method) proposes the test

statistic

ΛMLR
n =

sup(µ,η)∈ΘA
f(X1, . . . , Xn|µ, η)

supη∈Ω2
f(X1, . . . , Xn|µ0, η)

. (1)

Another approach, which is based on considerations somewhat different from the maxi-

mum likelihood methodology, is the method of the Bayes factor; that is, the integrated

likelihood ratio

ΛILR
n =

∫
f(X1, . . . , Xn|µ, η)dΨA(µ, η)∫
f(X1, . . . , Xn|µ0, η)dΨ0(η)

(2)

is proposed to be the test statistic, where priors Ψ0 and ΨA of the parameters condi-

tional on it being in the null or alternative, respectively (e.g., Marden, 2000).
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The objective of this paper is to propose and examine a class of likelihood ratio test

statistics based on both the maximum likelihood estimation and Bayesian approach.

In order to present a likelihood ratio type test, we estimate the denominator of the

ratio, whereas the HA-likelihood, which is known up to parameters, is considered in

accordance with the Bayes factor.

Let f̂(X1, . . . , Xn|µ0, η̂) be an estimator of the H0-likelihood f(X1, . . . , Xn|µ0, η).

Consider, for example, the penalized maximum likelihood estimator of η, say

η̂(X1, . . . , Xn) = arg max
a

φ(a)f(X1, . . . , Xn|µ0, a), (3)

where φ is a decreasing function of a penalty (e.g., φ(a) = 1, φ(a) = exp(−a2)). Note

that, from a Bayesian point of view, φ can be regarded as a proportion of a prior density

of η (i.e. φ ∝ dΨ0, see Green, 1990). Thus, f̂(X1, . . . , Xn|µ0, η̂) can be presented in the

forms

f̂(X1, . . . , Xn|µ0, η̂) = φ (η̂(X1, . . . , Xn)) f (X1, . . . , Xn|µ0, η̂(X1, . . . , Xn)) , (4)

f̂(X1, . . . , Xn|µ0, η̂) =
1

D
φ (η̂(X1, . . . , Xn)) f (X1, . . . , Xn|µ0, η̂(X1, . . . , Xn)) , (5)

where

D =

∫
φ (η̂(x1, . . . , xn)) f (x1, . . . , xn|µ0, η̂(x1, . . . , xn))

n∏

i=1

dxi.

Obviously, if, under the null, η is known to be fixed η0 then we assume that

f̂(X1, . . . , Xn|µ0, η̂) = f(X1, . . . , Xn|µ0, η0).

Finally, define the semi-Bayes test statistic

ΛSBLR
n =

∫
f(X1, . . . , Xn|µ, η)dΨA(µ, η)

f̂(X1, . . . , Xn|µ0, η̂)
. (6)

Notice that f̂(X1, . . . , Xn|µ0, η̂) can be an arbitrary funtion of X1, . . . , Xn. Thus, in

contrast to the ΛILR
n -construction, we connect estimation of the H0-likelihood func-

tion, appearing in ΛSBLR
n , with observations and hence we relax dependence on the

prior information under H0. In the next section, we show that this approach leads to

procedures with optimal properties and easily controlled levels of significance.

3 Optimality

Let δ ∈ [0, 1] be a decision rule based on data points {X1, . . . , Xn}, which rejects

the null hypothesis with probability δ. Suppose that the probability measure and the

associated expectation, given parameters (µ, η), are denoted by Pr(µ,η) and E(µ,η),

respectively. We propose the following test:

reject H0 iff ΛSBLR
n > C, (7)

where ΛSBLR
n is denoted by (6) and C is a threshold.
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Proposition 1 For any δ with the fixed estimate of the significance level

α̂ =

∫
δ(x1, . . . , xn)f̂ (x1, . . . , xn|µ0, η̂)

n∏

i=1

dxi, (8)

the statistic ΛSBLR
n (X1, . . . , Xn) by (6) provides the integrated most powerful test with

respect to a prior ΨA, i.e.

∫
Pr(µ,η)

{
ΛSBLR

n > Cα̂

}
dΨA(µ, η) ≥

∫
Pr(µ,η) {δ rejects H0} dΨA(µ, η),

where the threshold Cα̂ is chosen by

∫
I
{

ΛSBLR
n (x1, . . . , xn) > Cα̂

}
f̂ (x1, . . . , xn|µ0, η̂)

n∏

i=1

dxi = α̂.

Proof. By virtue of the inequality: for all A, B and δ ∈ [0, 1]

(A−B) (I {A ≥ B} − δ) ≥ 0, (9)

(I{·} is the indicator function) with A = ΛSBLR
n and B = C, we have

(∫
f(X1, . . . , Xn|µ, η)dΨA(µ, η)

f̂(X1, . . . , Xn|µ0, η̂)
− C

)
I
{

ΛSBLR
n > C

}

≥
(∫

f(X1, . . . , Xn|µ, η)dΨA(µ, η)

f̂(X1, . . . , Xn|µ0, η̂)
− C

)
δ.

And hence
(∫

f(X1, . . . , Xn|µ, η)dΨA(µ, η)

f(X1, . . . , Xn|µ0, η0)
− C

f̂(X1, . . . , Xn|µ0, η̂)

f(X1, . . . , Xn|µ0, η0)

)
I
{

ΛSBLR
n > C

}
(10)

≥
(∫

f(X1, . . . , Xn|µ, η)dΨA(µ, η)

f(X1, . . . , Xn|µ0, η0)
− C

f̂(X1, . . . , Xn|µ0, η̂)

f(X1, . . . , Xn|µ0, η0)

)
δ.

Since

E(µ0,η0)

∫
f(X1, . . . , Xn|µ, η)dΨA(µ, η)

f(X1, . . . , Xn|µ0, η0)
δ

=

∫ ∫
f(x1, . . . , xn|µ, η)dΨA(µ, η)

f(x1, . . . , xn|µ0, η0)
δ(x1, . . . , xn)f(x1, . . . , xn|µ0, η0)

n∏

i=1

dxi

=

∫
f(x1, . . . , xn|µ, η)dΨA(µ, η)δ(x1, . . . , xn)

n∏

i=1

dxi

=

∫ (
E(µ,η)δ

)
dΨA(µ, η),

deriving the expectation E(µ0,η0) of the inequality (10) with C = Cα̂, we obtain

∫
Pr(µ,η)

{
ΛSBLR

n > Cα̂

}
dΨA(µ, η)− Cα̂ ≥

∫
Pr(µ,η) {δrejectH0} dΨA(µ, η)− Cα̂.



5

That completes the proof of Proposition 1.

In the case, where under the simple null hypothesis η = η0 is known and hence f̂ =

f(X1, . . . , Xn|µ0, η0), α̂ is the classical definition of the significance level of tests. Note

that, in several cases, when η is unknown and considered as a nuisance parameter, the

observed data can be transformed to data T = {T1(X1, . . . , Xn), . . . , Tn(X1, . . . , Xn)}
such that the distribution function of T does not depend on η, under H0 (e.g., Brown,

et al., 1975; Lehmann and Romano, 2005). In these situations, α̂ based on the known

joint density of T is the type I error.

In accordance with Proposition 1, prior ΨA(µ, η) can be chosen with respect to a

special area of parameters µ and η, under HA, where the maximum of the test’s power

is desired.

When parameters under the null are unknown, the well accepted approach for

comparing tests is based on contrasts of the power of decision rules δ that satisfy the

following condition: for a given α ∈ (0, 1)

sup
η∈Ω2

Pr(µ0,η) {δ rejects H0} ≤ α. (11)

Commonly, the monitoring (11) of the type I error is stipulated on a decision rule δ to

be a test (e.g., Lehmann and Romano, 2005). To be consistent with requirement (11),

we present the next result.

Proposition 2 Assume that f̂(X1, . . . , Xn|µ0, η̂) in (6) is defined by (4) (or by (5))

and limit the set of decision rules to

{
δ : for some ηδ sup

η∈Ω2

Pr(µ0,η) {δ rejects H0} = Pr(µ0,ηδ) {δ rejects H0}
}

.

Then

α̂ ≥ φ(ηδ) sup
η∈Ω2

Pr(µ0,η) {δ rejects H0}

(or 1 ≥ α̂ ≥ φ(ηδ)

D
sup

η∈Ω2

Pr(µ0,η) {δ rejects H0} , if (5) is applied),

where α̂ by (8) is fixed for tests considered in Proposition 1.

Proof. The proof directly follows from the definition (8) with (3).

In accordance with Proposition 2, a fixed value of α̂ can control the type I error of

tests.

The proposed test is based on the likelihood ratio technique. It is widely known in

the statistical literature that such tests have high power, therefore, evaluation of their

significance level is a major issue. Most results dealing with the significance level of the

generalized maximum likelihood ratio tests (even in the simplest cases of independent

identically distributed observations) are complex and asymptotic (n →∞) with special

conditions on the distribution function of X1, . . . , Xn. The test (7) has a guaranteed,

non asymptotic and distribution free upper bound for the estimated significance level

α̂. In addition, allowing for Proposition 2, one can request as small as we want, with

regard to probabilities that α̂ > 0. To this end, we present the next proposition.
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Proposition 3 The estimated significance level of the test (7) satisfies the inequality

α̂ =

∫
I
{

ΛSBLR
n (x1, . . . , xn) > Cα̂

}
f̂ (x1, . . . , xn|µ0, η̂)

n∏

i=1

dxi

≤ 1

Cα̂

∫
PrHA(µ,η)

{
ΛSBLR

n (X1, . . . , Xn) > Cα̂

}
dΨA(µ, η) ≤ 1

Cα̂
.

Proof. Since by the definition (6), the event
{
ΛSBLR

n (x1, . . . , xn) > Cα̂

}
is equivalent

to
{

f̂(x1, . . . , xn|µ0, η̂) <
1

Cα̂

∫
f(x1, . . . , xn|µ, η)dΨA(µ, η)

}
,

we have

α̂ ≤ 1

Cα̂

∫
I
{

ΛSBLR
n (x1, . . . , xn) > Cα̂

}∫
f(x1, . . . , xn|µ, η)dΨA(µ, η)

n∏

i=1

dxi

=
1

Cα̂

∫ ∫
I
{

ΛSBLR
n (x1, . . . , xn) > Cα̂

}
f(x1, . . . , xn|µ, η)

n∏

i=1

dxi dΨA(µ, η)

=
1

Cα̂

∫
PrHA(µ,η)

{
ΛSBLR

n (X1, . . . , Xn) > Cα̂

}
dΨA(µ, η)

≤ 1

Cα̂

∫ ∫
f(x1, . . . , xn|µ, η)

n∏

i=1

dxi dΨA(µ, η) =
1

Cα̂
.

The proof of Proposition 3 is complete.

That is, we have the upper bound (that does not involve n and is independent of

different conditions on the distribution of X1, . . . , Xn) for the estimated significance

level of test (7): α̂ ≤ 1/C. Thus, selecting C = 1/α̂ determines a test with an estimated

level of significance that does not exceed α̂. Propositions 2 and 3 ensure a p-value of

the test. In accordance with the inequality α̂ ≤ 1/C, theoretically, values of α̂ can be

chosen as small as desired.

One can define the test statistic (6) by

f̂(X1, . . . , Xn|µ0, η̂) =

∫
f(X1, . . . , Xn|µ0, η)dΨ0(η).

In this case, we have ΛSBLR
n = ΛILR

n , where ΛILR
n by (2). And hence the proposed

method is equivalent to the Bayes factor. Denote the Bayesian significance level of a

decision rule δ in the form of

α =

∫
δ(x1, . . . , xn)

∫
f(X1, . . . , Xn|µ0, η)dΨ0(η)

n∏

i=1

dxi (12)

=

∫
Pr(µ0,η){δ rejects H0}dΨ0(η)

(
α = α̂, when f̂ =

∫
f(X1, . . . , Xn|µ0, η)dΨ0(η)

)
.

The next result is a simple corollary of Proposition 1
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Corollary 1 For any δ with the fixed Bayesian significance level α the statistic ΛILR
n

provides the integrated most powerful test with respect to a prior ΨA, i.e.

∫
Pr(µ,η)

{
ΛILR

n > Cα

}
dΨA(µ, η) ≥

∫
Pr(µ,η) {δ rejects H0} dΨA(µ, η),

where the threshold Cα is chosen by

∫
Pr(µ0,η){ΛILR

n > Cα}dΨ0(η) = α.

Remark 1. When η0 is unknown, comparing decision rules from the set {δ : supη∈Ω2

Pr(µ0,η)(δ rejects H0) ≤ α} (where α is fixed) is a very complex problem. Suppose we

have two tests, (T1) and (T2), for hypothesis H0 versus HA, given by

(T1) : reject H0 iff statistic S1 > C1; and (T2) : reject H0 iff statistic S2 > C2,

where statistics S1, S2 are based on a sample {Zi, i = 1, . . . , m ≥ 1}, and C1, C2 are

both thresholds. We would like to compare (T1) with (T2), when the parameters under

H0 and HA are unknown. The suggestion of fixing the type I errors of (T1) and (T2)

as α and then contrasting the powers of these tests is problematic. First, in general,

we cannot easily choose C1α, C2α such that

sup
η

Pr(µ0,η){S1 > C1α} ≤ α and

sup
η

Pr(µ0,η){S2 > C2α} ≤ α.

Since Monte Carlo evaluations of supη Pr(µ0,η) is complex and biased, analytical pre-

sentations of Pr(µ0,η){L > C} and Pr(µ0,η){D > C} have to be proposed in order

to derive C1α and C2α. Second, assuming that C1α and C2α are known or evaluated,

then comparing Pr(µ,η){S1 > C1α} with Pr(µ,η){S2 > C2α} is an arduous task. Al-

ternatively, we suggest fixing an H0-likelihood’s estimator (say, f̂H0(Z1, . . . , Zm)) as

P̂ rH0{H0 is rejected
}

:=

∫
f̂H0(z1, . . . , zm)I{H0 is rejected}dz1 · · · dzm = α̂,

and then evaluating integrated powers of (A) and (B). It is clear that for thresholds

C1α̂, C2α̂ :

P̂ rH0{L > C1α̂} :=

∫
f̂H0(z1, . . . , zm)I{L(z1, . . . , zm) > C1α̂}dz1 · · · dzm = α̂ and

P̂ rH0{D > C2α̂} :=

∫
f̂H0(z1, . . . , zm)I{D(z1, . . . , zm) > C2α̂}dz1 · · · dzm = α̂,

can be easily obtained by Monte Carlo methods. (We consider calculation of α̂ in

Section 3.1 based on an example.)
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Remark 2. Asymptotic approximation. To apply the proposed tests, asymptotic presen-

tation of PrH0{H0 is rejected} is not of crucial necessity. However, we can demonstrate

its behavior under the following scenario. Assume that X1, . . . , Xn are independent

identically distributed(i.i.d.) random variables. Without loss of generality, let the func-

tion φ in (4) be equal to 1. O’Hagan(1995) has shown that, under standard regularity

conditions (for details see Gelfand and Dey, 1994, O’Hagan, 1995 as well as Kass and

Wasserman, 1995), the numerator of (6) can be asymptotically expressed as

ψA(µ̂MLE , η̂MLE)L2n−12π|Vn|
1
2

where L2 = maxµ,η
∏n

j=1 f(Xi|µ, η) is the maximized likelihood, −nV −1
n is the Hes-

sian matrix of logf at the maximum likelihood estimators (µ̂MLE , η̂MLE) (Vn → V

as n →∞, V is a constant matrix), and ψA(µ, η)dµdη = dΨA(µ, η). Then

Λ =

∫
f(X1, . . . , Xn|µ, η)dΨA(µ, η)

f̂(X1, . . . , Xn|µ0, η̂MLE H0)
≈ L2

L1
ψA(µ̂MLE , η̂MLE)n−12π|V | 12 ,

where L1 = f(X1, . . . , Xn|µ0, η̂MLE H0). Under H0,

2logΛ ≈ 2log
L2

L1
+ 2 log ψA(µ̂MLE , η̂MLE)n−12π|V | 12

which is asymptotically distributed as a χ2
1 plus 2 log(ψA(µ, η)n−12π|V | 12 ).

3.1 Example: Test for Autoregression.

Consider the autoregressive process AR(1): X0 = 0, Xi = µXi−1 + εi, i = 1, · · · , n,

where {εi}n
i=1 are independent identically normally distributed random variables with

unknown mean η and unit standard deviation. To test the baseline H0 : µ = 0 versus

alternative HA : µ 6= 0, we apply the proposed method. The test statistic has the form

ΛSBLR
n =

∫∞
−∞

∫∞
−∞

∏n
i=1 φ(Xi − µXi−1 − η)dΨA(µ, η)

exp(−bη̂2)
∏n

i=1 φ(Xi − η̂)
, (13)

where φ() and Φ() are the standard normal density and distribution functions, respec-

tively, and the penalized maximum likelihood estimator of η is

η̂(X1, . . . , Xn) = argmax
a

e−ba2
n∏

i=1

φ(Xi − a), b > 0

(
i.e., η̂ =

∑n
i=1 Xi/n

1 + 2b/n

)
.

Note that, if, under HA, |µ| ≥ 1 then HA corresponds to the non stationary AR(1),

and hence we can simply detect HA. In order to denote a prior ΨA, we utilize arguments

mentioned in Krieger et al. (2003). That is, for some |µ0| < 1, σµ > 0, η0 and ση > 0,

one can choose the prior

ΨA(µ, η) =
1

4

{
Φ

(
µ− µ0

σ2
µ

)
+ Φ

(
µ + µ0

σ2
µ

)}{
Φ

(
η − η0

σ2
η

)
+ Φ

(
η + η0

σ2
η

)}
,
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which simplifies somewhat if, for example, µ0 = 1/2, σµ = 1, η0 = 0 and ση = 1. This

prior is a commonly used conjugate prior in the context of Bayes Factors (e.g., Aitkin,

1991). In this case, since

∫ ∞

−∞
exp(tu)φ(u/v)/

√
vdu = exp

(
1

2
vt2

)
,

the numerator of ΛSBLR
n is

∫ ∞

−∞

∫ ∞

−∞

n∏

i=1

φ(Xi − µXi−1 − η)dΨA(µ, η) (14)

=
1

4

[
A(µ0, η0) exp

{
1

2
B2(µ0, η0)F

}
+ A(µ0,−η0) exp

{
1

2
B2(µ0,−η0)F

}

+ A(−µ0, η0) exp
{

1

2
B2(−µ0, η0)F

}
+ A(−µ0,−η0) exp

{
1

2
B2(−µ0,−η0)F

}]
,

where

A(µ0, η0) = a exp

{
− µ2

0

2σ2
µ
−

∑n
i=1(Xi − η0)

2

2(1 + nσ2
η)

− σ2
η(n

∑n
i=1 X2

i − (
∑n

i=1 Xi)
2)

2(1 + nσ2
η)

}
,

B(µ0, η0) =
µ0

σ2
µ

+

∑n
i=1 Xi−1(Xi − η0)

1 + nσ2
η

+
σ2

η(n
∑n

i=1 XiXi−1 −
∑n

i=1 Xi

∑n
i=1 Xi−1)

(nσ2
η + 1)

,

F =

(
1

σ2
µ

+

∑n
i=1 X2

i−1

1 + nσ2
η

+
σ2

η(n
∑n

i=1 X2
i−1 − (

∑n
i=1 Xi−1)

2)

(1 + nσ2
η)

)−1

,

a = (2π)−n/2F 1/2σ−1
µ (12 + nσ2

η)−1/2 .

Following Proposition 1, the statistic (13) is the most powerful with respect to ΨA via

tests with fixed α̂, where

α̂ =

∫
exp(−bη̂2(x1, · · · , xn))

∏n
i=1 φ(xi − η̂(x1, · · · , xn))I

{
ΛSBLR

n > C
}

dx1 · · · dxn∫
exp(−bη̂2(x1, · · · , xn))

∏n
i=1 φ(xi − η̂(x1, · · · , xn))dx1 · · · dxn

.

Note that, in the context of Proposition 2, b can be selected in order to minimize the

distance between α̂ and PrH0(ηs){ΛSBLR
n > C} = supη PrH0(η){ΛSBLR

n > C}. To

this end, b can be chosen to maximize

e−bη2
s∫

exp(−bη̂2(x1, · · · , xn))
∏n

i=1 φ(xi − η̂(x1, · · · , xn))dx1 · · · dxn
, (15)

because by the definitions of α̂ and η̂ we have

α̂ ≥ e−bη2
s PrH0(ηs){ΛSBLR

n > C}∫
exp(−bη̂2(x1, · · · , xn))

∏n
i=1 φ(xi − η̂(x1, · · · , xn))dx1 · · · dxn

.

One can show that

b =

(
n2 + 4n/η2

s

)1/2 − n

4
∼ 1

2η2
s

as n →∞

maximizes (15).
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3.1.1 Monte Carlo Study.

To examine the performance of the proposed test (13), we conduct the following Monte

Carlo study. Here we compare the proposed semi-Bayesian test with the maximum

likelihood ratio test with α̂ in (8) is fixed to be 0.05. Define µ0 = η0 = 0.5, σµ = ση = 1

and b = (n)1/2 in the numerator (14) and denominator of the test statistic (13),

respectively. The operating characteristic α̂ of tests corresponding to Section 3.1 can

be rewritten as

α̂ =
(

2b

n + 2b

)1/2
∫

exp

{
(
∑n

i=1 xi)
2

2(n + 2b)

}
δ(x1, · · · , xn)

n∏

i=1

φ(xi)dx1 · · · dxn

=
(

2b

n + 2b

)1/2

E exp

{
(
∑n

i=1 Xi)
2

2(n + 2b)

}
δ(X1, · · · , Xn)

where Xi ∼ N(0, 1) are i.i.d. (i = 1, . . . , n). This equation and 100, 000 repetitions of

samples {Xi ∼ N(0, 1)}n
i=1 allowed to calculate the test-thresholds CSBLR and CMLR

that are related to α̂ = 0.05. Table 1 presents these values of CSBLR and CMLR.

Table 1 here

Note that, Proposition 1 shows that the proposed test is the integrated most powerful

test with respect to ΨA. In this simulation study, we evaluate the power of the tests

for fixed η and µ. The Monte Carlo powers of the maximum likelihood ratio test and

test (13) were derived via 10, 000 repetitions of samples from each set of parameters

(η, µ) and the sample size n. (Note that for the Monte Carlo Power P we can assume

for this simulation CI = P ± 1.96(P (1− P )/10, 000)1/2.) In accordance with Table 1,

while we planned to obtain a test powerful around (η = ±0.5, µ = ±0.5), the average

power (with no respect to ΨA) of the proposed test was about 1.35 times better than

that of the MLR test, as well as in the considered cases excepting (µ, η) = (0.1, 0)

the semi-Bayesian test was also more powerful than the maximum likelihood ratio test

was. However, the distance between the powers of the tests asymptotically vanished

when (µ = 0.1, η = 0) and the sample size n increases in Table 1.

Since, in the context of the considered example, any reasonable test for µ = 0 vs

|µ| ≥ 1 is expected to provide high levels of the power and approximated bounds for

η can be easily evaluated basing on observed data, the prior ΨA can be suggested to

be applied. (Our broad Monte Carlo investigation (particularly displayed in Table 1)

showed that even when η = 2, 3 the proposed test could be recommended instead of

the MLR test.) Moreover, consideration of µ and η, belonging to

ΨA(µ, η) = π(µ, η) ≡ I {µ ∈ [−0.9, 0.9]}
1.8

I {η ∈ [−1, 1]}
2

,

obviously has an independent interest in the terms of the most powerful testing (see

Proposition 1), when the alternative parameter assumed to be from π(µ, η).

Table 2 here

In comparing with Table 1, Table 2 displays the Monte Carlo powers of the MLR test

and test (13) with ΨA(µ, η) = π(µ, η) based on 10, 000 repetitions of samples from each

set of parameters (µ, η) and the sample size n. Although Table 2 corroborates that

even when η is not from ΨA(µ, η) we can recommend the test (13), we need to indicate

when the alternative µ = 0.1 and n = 25 the MLR test is slightly superior the proposed

test (Table 1 also demonstrated a similar result corresponding to (µ, η) = (0.1, 0)).
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4 Conclusion

In the general statements of parametric hypothesis testing, the semi-Bayes approach

was developed and investigated. We have found that when the test statistic is the

likelihood ratio that is supported by both estimation and the Bayes presentation of the

likelihood functions under the null and alternative hypotheses, respectively, the test

has the following properties.

The proposed test is the integrated most powerful test with respect to a prior

distribution on the unknown parameters of the alternative. In particular, this prior can

be chosen in accordance with areas where investigators wish to reach the maximum

power of the test. The semi-Bayes test can be applied to a real study without analytical

presentations of the type I error probability. Generally, the maximum likelihood ratio

and the pure Bayes factor tests require evaluating analytical forms of the type I error

probability, because the test thresholds have to be fixed. To use the semi-Bayes method,

a prior distribution of parameters, under the null, is not necessary.

We proposed tests and investigated their operating characteristics in order that

these tests can be easily applied in practice; the proposed tests provide maximum

integrated power in the area that can correspond to the tester’s interests - it is different

from the Bayesian point of view.
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Table 1 Monte Carlo comparing for the Powers of the tests.

n = 25, CMLR = 5.99,
CSBLR = 0.25

n = 50, CMLR = 6.30,
CSBLR = 0.12

n = 75, CMLR = 6.70,
CSBLR = 0.08

µ η PowerMLR PowerSBLR PowerMLR PowerSBLR PowerMLR PowerSBLR

0 0 0.0456∗ 0.0336∗ 0.0492∗ 0.0408∗ 0.0481∗ 0.0428∗
0.1 0 0.0519 0.0410 0.0869 0.0765 0.1107 0.1028
0.3 0 0.2365 0.2232 0.4914 0.4880 0.6809 0.6848
0.7 0 0.8312 0.8790 0.9928 0.9961 0.9999 0.9999
0.1 0.25 0.0531 0.0721 0.0837 0.1420 0.109 0.1956
0.3 0.25 0.2351 0.3223 0.4939 0.6337 0.6741 0.8131
0.7 0.25 0.8430 0.9296 0.9941 0.9990 0.9997 1
0.1 0.5 0.0515 0.2647 0.0918 0.5309 0.1125 0.7158
0.3 0.5 0.2365 0.6263 0.4935 0.9202 0.6764 0.9834
0.7 0.5 0.8695 0.9886 0.9954 1 0.9999 1
0.1 1 0.0588 0.2443 0.0848 0.5993 0.1165 0.9875
0.3 1 0.2529 0.6194 0.5047 0.9498 0.6948 1
0.7 1 0.9471 1 0.9980 1 1 1
Average∗∗ 0.3890 0.5175 0.5259 0.6946 0.5978 0.7902
∗ indicates the Monte Carlo Type I Error of corresponding test provided that η is known to be 0 under H0;
∗∗ the case (0,0) is not included.

Table 2 Monte Carlo comparing for the Powers of the tests.

n = 25, CSBLR = 0.650 n = 50, CSBLR = 0.295 n = 75, CSBLR = 0.185
µ η PowerMLR PowerSBLR PowerMLR PowerSBLR PowerMLR PowerSBLR

0 0 0.0523 0.0341 0.0495 0.0412 0.0548 0.0471
0 3 0.0535 0.0419 0.0496 0.0425 0.0548 0.0427
0.1 0 0.0577 0.0484 0.0860 0.0754 0.1194 0.1098
0.1 1.5 0.0622 0.5999 0.0871 0.8409 0.1248 0.9991
0.1 3 0.0711 0.7041 0.0916 0.8971 0.1303 0.9992
0.5 0.5 0.5897 0.9072 0.9041 0.9973 0.9834 1
0.5 2 0.8145 0.8319 0.9634 0.9838 0.9941 0.9995
0.5 3 0.9464 0.9597 0.9828 0.9839 0.9988 0.9989
Average∗∗ 0.4236 0.6752 0.5192 0.7964 0.5585 0.8511
∗∗ the cases (0,0) and (0,3) are not included.


