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Abstract

The growing need for analyzing multivariate aspects of joint data distributions is reinforced by a diversity of exper-
iments based on dependent outcomes. In this sense, different contexts of joint symmetry of data distributions have
been dealt with extensively in both theory and practice. Univariate characterizations of properties of multivariate
distributions can allow the reduction of the original problem to a substantially simpler one. We focus on research
scenarios when vectors x and Ax are identically distributed, where A is a diagonal matrix and absolute values of
A’s elements equal to one. It is shown that these scenarios are attractive in new characterizations of joint or mutual
independence between random variables. We establish projections of the joint symmetry and independence via the
one-dimensional symmetry of linear combinations of x’s components and their interactions. These projections are
the most revealing of the multivariate data distribution. The usefulness of the linear projections is exemplified by
constructing an efficient nonparametric exact test for joint treatment effects. In this framework, an algorithm for im-
plementing linear projection-based tests is proven. Numerical studies based on generated vectors and a real-data set
show that the proposed test can exhibit high and stable power characteristics. The present method can be also used
for testing independence between symmetric random vectors.

Keywords: Characterization, Density-based empirical likelihood, Distribution-free test, Independence, Linear
projection, Multivariate symmetry, Nonparametric test
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1. Introduction

Different aspects of symmetry issues are frequently addressed in both the theoretical and applied statistical litera-
ture. For instance, in biostatistics, concepts of symmetry of data distributions play a major role in detecting treatment
effects. We consider, for example, the following experiment. In order to evaluate the feasibility and efficacy of a
group-based therapy for children with attention-deficit/hyperactivity disorder (ADHD) and severe mood dysregula-
tion (SMD), the study was conducted at the Center for Children and Families, the New York State University at
Buffalo. Children ages 7 to 12 with ADHD and SMD were assigned to participate in the experimental 11-week group
therapy program. The group-based therapy program consisted of eleven 90-minute sessions with concurrent parent
and child groups. Assessments were completed at two time points: Baseline (Week 0) and Endpoint (Week 11). Clini-
cians measured the continuous Children’s Depression Rating Scale–Revised total score (CDRS) and the Young Mania
Rating Scale (YMRS) (e.g., Leibenluft et al. [18]). To illustrate research questions of the present paper, we consider
data from 10 patients. In this case, the classic paired Wilcoxon signed-rank test based on Baseline- and Endpoint-
observations displays p-values of 0.056 and 0.057, when measurements of CDRS and YMRS are used, respectively.
However, an effect of the group-based therapy program may be still detected by evaluating a change in joint Baseline
and Endpoint distributions of CDRS and YMRS data points (see Section 4). Note that the estimated correlations
between CDRS and YMRS are about 0.125 and 0.218 with respect to Baseline and Endpoint, respectively. In this
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example, the relatively small sample size of 10 makes critical concerns regarding: (a) applications of multivariate tests
with asymptotically controlled significance levels; (b) applications of multivariate goodness-of-fit pre-tests, and then
parametric assumptions (a use of pre-tests can require to adjust outputs of main decision-making procedures).

Paired data based on pre-and post-experimental measurements are frequently encountered in health-related studies.
For example, a univariate paired data driven problem can be stated as following: let us first define (Y11,Y21), . . .,
(Y1n,Y2n) to be a random sample from a bivariate population with absolutely continuous joint distribution function F12
and marginal distributions of Y1i and Y2i given as F1 and F2, respectively. The general univariate location decision-
making problem consists of testing the hypothesis H0: θ = 0 versus H1: θ , 0 through the relationship F1(x) =
F2(x − θ). For example, in biomedical experiments θ may represent the mean or median difference between subject
values measured pre-and post-treatment. The paired t-test, the sign test and the Wilcoxon signed-rank test are common
statistical procedures for testing H0: θ = 0 versus H1: θ , 0. These tests are based on the n paired differences
Zi = Y1i − Y2i. For instance, the classical nonparametric Wilcoxon signed-rank procedure is a permutation-based
method under the assumption that Z is symmetric about zero under the null hypothesis. The biostatistical literature
has tended to associate the problem of testing the hypothesis F1 = F2, e.g., in the context of detecting treatment
effects, with the statement of testing the symmetry Pr (Z1 ≤ x) = Pr (−Z1 ≤ x) when the forms of the distribution
functions F1 , F2 and F12 are completely unknown (e.g., Wilcoxon [39]).

In modern biostatistical practice, decision-making procedures are often assumed to be based on multiple dependent
outcomes. This stimulates the growing need for fundamental developments concerning various aspects of symmetry
of multivariate probability distributions in both theory and practice, e.g., [7, 9, 33]. The present paper is intended for
focusing on cases where vectors x and −x are identically distributed, say x d

=− x, where the notation d
= means equality

in distribution. This statement represents a symmetry of x’s distribution about zero in a natural and common way,
e.g., [1]. Our aim is to examine simple univariate characterizations of such form of symmetry, in order to construct a
testing strategy for assessing joint symmetry via a known powerful procedure that uses one-dimensional observations.

Nonparametric decision-making evaluations of the vector’s distribution symmetry are not simple tasks that can
be implemented by directly extending well-known univariate procedures. Perhaps, this is due to the fact that, in the
multivariate setting, extensions of null-distribution-free univariate methods, e.g., Kolmogorov-Smirnov or Wilcoxon
signed-rank type schemes, are not exact, since their null distributions depend on underlying data distributions. In
a theoretical point of view, the critical issue is that the marginal distributions of vector’s elements cannot guarantee
to depict sufficient information about the corresponding multivariate distribution of the vector (see, e.g., Example 1
in Section 2.1), since a structure of dependence between the vector’s components should be examined, whereas this
structure is unknown in many cases. Univariate characterizations of properties of the vector’s distribution can allow
the reduction of the original problem to a substantially simpler one.

We propose to one-to-one map the joint symmetry to the one-dimensional symmetry of linear combinations of x’s
components and their interactions. In this context, we refer the reader to Friedman [10] for the explanation: “The
most commonly used dimension-reducing transformations are linear projections. This is because they are among the
simplest and most interpretable. Moreover, projections are smoothing operations in that structure can be obscured by
projection but never enhanced. Any structure seen in a projection is a shadow of an actual (usually sharper) structure
in the full dimensionality. In this sense those projections that are the most revealing of the high-dimensional data
distribution are those containing the sharpest structure. It is of interest then to pursue such projections.”

It turns out that scenarios, when p-dimensional vectors x, −x and Ax are identically distributed, where the matrix
A = diag

(
h1, . . . , hp

)
, |hi| = 1, i ∈ {1, ..., p} , −p <

∑p
i=1 hi < p, can be attractive in new characterizations of joint

or mutual independence between random variables. Statistical aspects of independence are very complicated issues
in characterizing, evaluations and testing (Lehmann [17]). Note that, in statistical analyses of medical data, explor-
ing joint or mutual dependence among variables is a fundamental issue (e.g., Vexler et al. [34]). For example, it is
important to detect the dependence between disease characteristics and a variety of potential predictors to determine
significant risk factors. There is substantial literature addressing the development of classes of multivariate distribu-
tions in light of independence properties, e.g., [8, 14]. For instance, it is of great interest, to treat distribution families
in which zero correlation implies or does not imply independence. In Section 2, we construct characterizations of in-
dependence, considering wide families of bivariate and multivariate distributions, including those that have been dealt
with extensively in the literature. To this end, we derive univariate linear projections of the multivariate symmetry
cases, where vectors x d

= − x d
=Ax. This concept can be employed for developing exact tests of independence between
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random vectors (see Section 5 and the supplementary materials, for several details in this context).
In a case of bivariate symmetry, we refer the reader to Nelsen [22] for an extensive study of concepts and asso-

ciations related to situations when vectors x = [X1, X2]⊤ , −x , [−X1, X2]⊤ and [X1,−X2]⊤ are identically distributed,
where the operator ⊤ stands for transposition.

Note also that considerations of univariate projections of multivariate statements related to x d
= −x d

=Ax can be
rooted in an interest of the multivariate analysis, in a theoretical context. One of our aims is to collect together some
interesting facts and to remind the readers regarding different situations related to the studied issues.

In Section 3, we employ the linear projection related to the statement x d
= − x in order to conduct an exact

density based empirical likelihood ratio (DBELR) procedure for testing multivariate symmetry. The density based
empirical likelihood (DBEL) method for developing nonparametric decision-making policies has been addressed in
both experimental and theoretical studies, e.g., [11, 21, 31, 38, 40]. Vexler et al. [35] introduced the DBELR test for
univariate symmetry. It has been shown that the DBELR approach clearly outperforms known testing procedures,
including the classic Wilcoxon signed-rank test, in many cases. In Section 3.1, the DBEL technique is outlined. We
then extend the DBELR test to propose a new strategy for detecting joint treatment effects.

Although the use of the linear projection allows to propose a testing mechanism based on univariate combinations
of vector-observations’ components, we have a complicated issue related to the need for computing the testing proce-
dure over infinitely many linear combinations of vector−observations’ components. A neglect of several linear combi-
nations of vector−observations’ components in the testing joint symmetry can yield wrong decisions (Hamedani [12]).
To overcome this, in Section 3.2, we establish a data−driven algorithm for implementing the proposed DBELR test.
This test is exact, i.e. null-distribution-free, for fixed sample sizes. The asymptotic consistency of the proposed
nonparametric test is presented.

In Section 3.3, we demonstrate simulation results showing that our test exhibits high and stable power characteris-
tics across a variety of alternatives. In general, in the considered nonparametric framework, there are no most powerful
decision-making mechanisms. We select the distance-based weighted decision-making policy recently developed by
Chen et al. [7] to be compared with the DBELR test. In contrast to the exact DBELR test, the test of Chen et al. [7]
employs a permutation type technique to control the type I error rate approximately that is a common scheme used by
many nonparametric testing mechanisms based on multivariate data.

Furthermore, as shown in Section 4, when used to analyze the group-based therapy for children with ADHD and
SMD, the proposed test succeeds in finding important treatment effects, illustrating the applicability of the proposed
method. Finally, we conclude this paper with a discussion in Section 5. Section 5 discusses how to integrate theoretical
propositions shown in the present paper and the decision-making mechanism presented in Section 3 in order to derive
tests for independence of random vectors. This approach is experimentally evaluated in the supplementary materials.

2. Linear Characterizations, Symmetry and Independence

In the present section we focus on associations between multivariate symmetric distributions of vectors and uni-
variate distributions of linear combinations of the corresponding vectors’ components. We treat a special class of
joint symmetries, yielding new characterizations of independence of random variables. It is shown that, in certain
situations, the independence notion can be one-to-one mapped to properties of univariate symmetrically distributed
linear combinations. Several our research queries are stated in Questions 1-5. The theoretical results are summarized
in Propositions 1− 8 that establish univariate projections of joint symmetry and independence. Some proofs of the
propositions are included for completeness and contain comments that assist to explain the presented results.

The starting points of our study are associated with Propositions 1 and 2 shown in this section. Proposition 1
uses the Cramér–Wold’s concept and can be found in [3]. Proposition 2 directly compiles Proposition 1 and Theorem
2.4 presented in [22]. Up to our knowledge, Propositions 3-8 are new and assist to achieve the following aims.
Propositions 3-5 are present in the light of a question regarding situations when concepts of vectors’ symmetry could
yield independence of vectors’ components. For example, in the context of bivariate symmetry, Propositions 3-
5 correspond to inverses of the statement ”Let X1 and X2 be independent. Then different symmetry concepts are
equivalent” (see [22], for details). Propositions 7 and 8 depict new principles for deriving univariate projections of
the multivariate scenario x d

= − x d
=Ax.
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The next subsubsection analyses bivariate cases that are displayed, since: (a) variety statistical topics based on
bivariate data have broadened their appeal in recent theoretical and applied studies, e.g., [2, 22]; and (b) the presented
analysis is relatively clear, and provides the basic ingredients and explanations for evaluating more general scenarios.

2.1. Bivariate Cases

Let x = [X1, X2]⊤ denote a random vector and Z (a1, a2) = a1X1 + a2X2, ak ∈ R1, k ∈ {1, 2}, be a linear combi-
nation of x’s components. Assume that φ, φ1 and φ2 define the characteristic functions of x, X1 and X2, respectively.
In the present paper we call x a symmetric random vector if φ (t1, t2) = φ (−t1,−t2), for all tk ∈ R1, k ∈ {1, 2}.
Certainly, the inversion theorem states that the definition above describes the scenario with Pr (X1 ≤ u1, X2 ≤ u2)
= Pr (−X1 ≤ u1,−X2 ≤ u2), when x has a joint density function f (u1, u2) = f (−u1,−u2), u1, u2 ∈ R1, e.g., [32, p.56].

It is known that the distribution of x is uniquely determined by the distributions of linear forms Z (a1, a2), a1, a2 ∈

R1 (Cramér–Wold’s theorem). Thus, we begin with an analysis of the following question.
Question 1. What can we conclude about the distribution of x, if Z (a1, a2) is symmetric, for all ak ∈ R1, k ∈ {1, 2}?
Assume Z (a1, a2) is symmetric, for all a1 and a2 ∈ R1. Then

φ (t1, t2) = Eexp {iZ (t1, t2)} =
∫

exp (iu) d Pr {Z (t1, t2) < u} =
∫

exp (iu) d Pr {−Z (t1, t2) < u}

=

∫
exp (−iy) d Pr {Z (t1, t2) < y} =φ (−t1,−t2) ,

where i2 = −1. In this case we note that, since φ (t1, t2) = E exp (it1X1 + it2X2)= E cos (t1X1 + t2X2)+iE sin (t1X1 + t2X2),
we have E sin (t1X1 + t2X2) = 0 and then

φ (t1, t2) = Ecos (t1X1 + t2X2) .

Assume x is from a joint density f (u1, u2) that satisfies f (u1, u2) = f (−u1,−u2), for all u1 and u2 ∈ R1 . Then,
defining I (·) to be the indicator function, we obtain

Pr {Z (a1, a2) < u} =
∫∫

I {a1u1 + a2u2 < u} f (u1, u2) du1du2 =

∫∫
I {a1u1 + a2u2 < u} f (−u1,−u2) du1du2

=

∫∫
I {−a1z1 − a2z2 < u} f (z1, z2) d (−z1) d (−z2) = Pr {−Z (a1, a2) < u} .

Thus, we conclude with the next result.

Proposition 1. (Behboodian [3]). The random vector x is symmetric if and only if (iff) any linear combination of the
form Z (a1, a2), ak ∈ R1, k ∈ {1, 2}, is a symmetric random variable.

Now, let us consider the question below.
Question 2. Is it necessary that x is symmetric, when X1 and X2 are both from symmetric distributions?

Example 1. Consider a case when X1 and X2 are symmetric, but x is not symmetric. Define a symmetric ran-
dom variable ξ via its characteristic function φξ(t) = (1 − 2 |t|) I {|t| ≤ 0.5} . Using the characteristic functions
h1(t) = (1 − |t|) I {|t| ≤ 0.5} + 1/ (4 |t|) I {|t| > 0.5} and h2(t) = (1 − |t|) I {|t| ≤ 1}, we denote a random variable η with
the characteristic function φη(t) = 0.5 exp (it) h1(t) + 0.5 exp (-it) h2(t). It turns out that we can represent

φη(t) =
{

(1 − |t|) cos (t) , |t| ≤ 0.5
exp (it) / (8 |t|) + 0.5 exp (-it) (1 − |t|) I {|t| ≤ 1} , |t| > 0.5,

obtaining φη(t) , φη(−t) (Stoyanov [30, p. 131]). Assuming ξ and η are independent, we set X1 = ξ and X2 =

ξ + η. In this case, we have that X2 is symmetric with the characteristic function φX2 (t) = φξ(t)φη(t) = (1 − 2 |t|)
(1 − |t|) cos (t) I {|t| ≤ 0.5} (Stoyanov [30, p.131]), as well as

φ (t1, t2) = E exp {it1ξ + it2 (ξ + η)} = φξ (t1 + t2)φη (t2) ,
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where φξ (−t1 − t2) = φξ (t1 + t2), but φη (−t2) , φη (t2). Therefore x is not symmetric. In the context of this example,
it is interesting to mention that, according to Burdick [6], there exist independent random variables Y1 and Y2 such that
Y1 is symmetric, Y2 is not symmetric, but Y1 + Y2 is symmetric. In such cases, defining symmetric random variables
X1 = Y1, X2 = Y1 + Y2, we can see the linear combination Z (−1, 1) is not symmetric and then Proposition 1 says that
= [X1, X2]⊤ is not symmetric.

Example 1 shows that, in general, the statement “X1 and X2 are from symmetric distributions” does not guarantee
that φ (t1, t2) = Ecos (t1X1 + t2X2).

By virtue of that, for all ak ∈ R1, k ∈ {1, 2}, the linear form Z (a1, a2) is symmetric, we have X1 is symmetric and
X2 is symmetric, considering scenarios with a2 = 0 or a1 = 0, respectively. In this case, it is clear that E sin (t1X1) = 0
and E sin (t2X2) = 0, for all tk ∈ R1, k ∈ {1, 2}. In the context of the joint distribution of X1 and X2, the next question
can be discussed.
Question 3. Assume x is symmetric and Pr (X1 ≤ u1, X2 ≤ u2) = Pr (−X1 ≤ u1, X2 ≤ u2). What can we learn from this
situation?

Remark 1. Note that we cannot determinate that φ (t1, t2) = φ (−t1,−t2) implies, e.g., φ (t1, t2) = φ (−t1, t2), in general.
For example, if x has a bivariate normal distribution with Ex = 0 and EX1X2 , 0, then φ (t1, t2) , φ (−t1, t2), whereas
φ (t1, t2) = φ (−t1,−t2).

Now, using the trigonometric product-to-sum identity cos (x + y) = cos (x − y) −2 sin (x) sin (y), we obtain the
following proposition, when x is symmetric with the characteristic function φ (t1, t2) = Ecos (t1X1 + t2X2).

Proposition 2. If any linear combination Z(a1, a2) is a symmetric random variable and X1, X2 are independent, then
φ (t1, t2) = φ (t1,−t2) and φ (t1, t2) = φ (−t1, t2), for all tk ∈ R1, k ∈ {1, 2}. (See also Theorem 2.4 of [22], in this
context.)

Note, for example, that φ (t1, t2) = φ (t1,−t2) gives Pr (X1 ≤ u1, X2 ≤ u2) = Pr (X1 ≤ u1,−X2 ≤ u2), uk ∈ R1, k ∈
{1, 2}. The next research query is formulated in the following form.
Question 4. Can we show a reverse of Proposition 2, i.e., the statement: “If any linear combination Z(a1, a2) is a
symmetric random variable and φ (t1, t2) = φ (t1,−t2), then X1, X2 are independent”?
Nelsen [22] discussed different concepts of bivariate symmetry, showing that the concepts are equivalent if X1 and
X2 are independent (Theorem 2.4 of [22]). Question 4 is related to an ability to use the term ”iff” in the statement
above. Common approaches for characterizing symmetric and jointly symmetric random variables employ concepts
of independence, e.g., [7, 33]. In this framework, Question 4 treats a converse statement. Indeed, when x is from a
multivariate normal distribution with zero mean, the functional form of the x’s distribution provides a positive answer
to Question 4.

Example 2. Consider the density function related to a mixture of two joint normal distributions with correlations
0 < ρ < 1 and −ρ in the form:

f (x1, x2) = 0.5 {g (x1, x2, ρ) + g (x1, x2,−ρ)} , g (x1, x2, ρ) = exp
{
−0.5

(
x2

1 − 2ρx1x2 + x2
2

)
/
(
1 − ρ2

)}
/
{
2π
(
1 − ρ2

)1/2}
.

This density function was employed by Lancaster [16] in order to illustrate a case, when x is from f (x1, x2), X1
and X2 are normally distributed and the correlation of X1 and X2 is zero, but X1, X2 are dependent. In this scenario,
f (x1, x2) = f (−x1, x2) = f (x1,−x2) = f (−x1,−x2). This exemplifies that, in general, Question 4 has no simple
answer.

Note that, when φ (t1, t2) = Ecos (t1X1 + t2X2) and, e.g., φ (t1, t2) = φ (t1,−t2), we have Ecos (t1X1 + t2X2) =
Ecos (t1X1 − t2X2) that implies E sin (t1X1) sin (t2X2) = 0, since cos (x + y) = cos (x − y) − 2 sin (x) sin (y). This leads
to

Ecos (t1X1 + t2X2) = Ecos (t1X1) cos (t2X2) ,

since cos (x + y) = cos (x) cos (y) − sin (x) sin (y). We write these observations in the next lemma.
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Lemma 1. Define the claims: (a) φ (t1, t2) = φ (t1,−t2), φ (t1, t2) = φ (−t1, t2); (b) E sin (t1X1) sin (t2X2) = 0; and (c)
φ (t1, t2) = E cos (t1X1) cos (t2X2). Let any linear combination of the form Z (a1, a2), ak ∈ R1, k ∈ {1, 2}, be a symmetric
random variable. Then, (a) implies (b) that implies (c); and (c) implies (b) that implies (a).

Consider a class of x’s distributions with densities that can be expressed as

f (x1, x2) = r (x1, x2) exp
(
−0.5x2

1/σ
2
1 − 0.5x2

2/σ
2
2

)
,

where r (x1, x2) > 0 is a linking function, σ2
1, σ

2
2 ∈ R1 are positive parameters and it is assumed that r (x1, x2)

= r (x1x2), if r (x1, x2) = r (−x1,−x2). Then, the assumption φ (t1, t2) = φ (t1,−t2) implies r (x1x2) = r (−x1x2) as well
as that

EX1X2 =

∫ ∞
−∞

∫ ∞
−∞

x1x2 f (x1, x2) dx2dx1 =

∫ ∞
−∞

{∫ 0

−∞

x1x2 f (x1, x2) dx2 +

∫ ∞
0

x1x2 f (x1, x2) dx2

}
dx1

=

∫ ∞
−∞

{∫ 0

−∞

x1x2 f (x1, x2) dx2 +

∫ ∞
0

x1x2 f (x1,−x2) dx2

}
dx1

=

∫ ∞
−∞

{∫ 0

−∞

x1x2 f (x1, x2) dx2 −

∫ 0

−∞

x1z f (x1, z) dz
}

dx1 = 0. (1)

Thus, in this case, where zero correlation means independence (e.g., Leipnik [19]), we can use Proposition 2 to obtain
the following result.

Proposition 3. Let any linear combination of the form Z (a1, a2), a1, a2 ∈ R1, be a symmetric random variable
and x be from the density function f (x1, x2) = r (x1x2) exp

(
−0.5x2

1/σ
2
1 − 0.5x2

2/σ
2
2

)
. Then, φ (t1, t2) = φ (t1,−t2) or

φ (t1, t2) = φ (−t1, t2), for all tk ∈ R1, k ∈ {1, 2}, iff X1, X2 are independent.

Proposition 3 considers scenarios when zero correlation implies independence. Assume X1 and X2 are uncorre-
lated but not independent. According to Ebrahimi et al. [8], the summand uncorrelated marginal (SUM) bivariate
distributions have a great interest in applied and theoretical statistics. In a SUM case, X1 + X2

d
= X

′

1 +X
′

2, where the

random vector x′ =
[
X
′

1, X
′

2

]⊤
is distributed as Pr

(
X
′

1 ≤ u1, X
′

2 ≤ u2

)
= F1 (u1) F2 (u2) with the marginal distribution

functions F1 and F2 of X1 and X2, respectively. The SUM concept is equivalent to that of sub-independence, where it
is assumed that φ (t, t) = φ1 (t)φ2 (t). Following Ebrahimi et al. [8], we study the SUM class of x’s distributions with
densities in the form

f (x1, x2) = f1 (x1) f2 (x2) {1 + βq (x1, x2)} , −q (x1, x2) = q (x2, x1) = q (−x1, x2) = q (x1,−x2) , (2)

where x1 and x2 ∈ R1, fi (x) = dFi(x)/dx, i ∈ {1, 2}, q (x1, x2) is a linking function and β ∈ R1 is a constant that
provides f (x1, x2) ≥ 0 and depicts a level of dependence between X1 and X2. Supposing that any linear combination
Z(a1, a2) is a symmetric random variable, we note that X1 is symmetric and X2 is symmetric. We then will employ the
statement and conditions of Ebrahimi et al. [8]’s Proposition 1 to yield the next result.

Proposition 4. Let any linear combination of the form Z (a1, a2), ak ∈ R1, k ∈ {1, 2}, be a symmetric random variable
and x be from the density function (2). It turns out that the following claims are equivalent: (a) φ (t1, t2) = φ (t1,−t2),
φ (t1, t2) = φ (−t1, t2), for all tk ∈ R1, k ∈ {1, 2}; and (b) X1, X2 are independent.

The proof is deferred to the Appendix.
We can remark that density functions satisfied (2) with the marginal densities f1 (x) = f2 (x), f1 (−x) = f1 (x) lead

to zero Kendall’s tau and zero Spearman’s rho (Ebrahimi et al. [8]).

Example 3. To illustrate the family (2), we demonstrate the following scenarios, where X1 and X2 are identically
N(0, 1)-distributed:

f (x1, x2) = (2π)−1 exp
{
−
(
x2

1 + x2
2

)
/2
} [

1 + βx1x2

(
x2

1 − x2
2

)
exp
{
−
(
x2

1 + x2
2

)
/2
}]
, 0 ≤ β ≤ e2/4;

f (x1, x2) = (2π)−1 exp
{
−
(
x2

1 + x2
2

)
/2
} [

1 + βx1x2

(
x2

1 − x2
2

) (
x2

1 + x2
2

)−2
exp
{
−
(
x2

1 + x2
2

)
/2
}]
, 0 ≤ β ≤ 4.
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It is also interesting to incorporate families of bivariate and multivariate distributions studied by Jogdeo [14] in
our research (see also Remark 3, in this context). For example, defining the set of distributions

S =
{
F : F (x1, x2) = Pr (X1 ≤ x1, X2 ≤ x2) ≥ (or ≤ ) Pr (X1 ≤ x1) Pr (X2 ≤ x2) , for all xk ∈ R1, k ∈ {1, 2}

}
,

we have:

Proposition 5. Assume that x’s distribution is a member of S and any linear combination Z (a1, a2), ak ∈ R1, k ∈
{1, 2}, is a symmetric random variable. Then, φ (t1, t2) = φ (t1,−t2), φ (t1, t2) = φ (−t1, t2), for all tk ∈ R1, k ∈ {1, 2}, iff
X1, X2 are independent.

The proof is deferred to the Appendix.
Note that the class of distribution functions S plays an important role in applications to testing hypotheses of

independence, e.g., [14].
In general, intuitively, it seems that, by virtue of Lemma 1 , we can use Taylor’s theorem to represent

φ (t1, t2) = Ecos (t1X1 + t2X2) = Ecos (t1X1) cos (t2X2) = E
[∑∞

k=0

∑∞

n=0
(−1)n+k(t1)2n(t2)2kX2n

1 X2k
2 / {(2n)!(2k)!}

]
,

when Z (a1, a2) is symmetric and φ (t1, t2) = φ (−t1, t2) = φ (t1,−t2). Then, requiring E
(
X2n

1 X2k
2

)
=E
(
X2n

1

)
E
(
X2k

2

)
, we

would obtain a characterization of independence via the symmetry manner, since symmetrically distributed X1 and
X2 have the characteristic functions φ1 (t) = Ecos (tX1) and φ2 (t) = Ecos (tX2), respectively. However, it is known
that the equation E

(
Xn

1 Xk
2

)
=E
(
Xn

1

)
E
(
Xk

2

)
, for all integers n ≥ 0 and k ≥ 0, does not guarantee that X1 and X2 are

independent (Bisgaard and Sasvári [4]). Toward this end, we should state the next proposition in the form below.

Proposition 6. Assume the following conditions are satisfied:

(i) For any real a1, a2, there exists wa > 0 such that E exp {wa |Z (a1, a2)|} < ∞;

(ii) any linear combination Z (a1, a2), ak ∈ R1, k ∈ {1, 2}, is a symmetric random variable.

Then, for all t1 and t2 ∈ R1 and integers n ≥ 0, k ≥ 0, we have φ (t1, t2) = φ (t1,−t2), φ (t1, t2) = φ (−t1, t2) and
E
(
X2n

1 X2k
2

)
= E
(
X2n

1

)
E
(
X2k

2

)
iff X1, X2 are independent.

The proof is deferred to the Appendix.

Example 4. We revisit Example 2, where the defined density function satisfies f (x1, x2) = f (−x1,−x2), f (x1, x2) =
f (−x1, x2) and f (x1, x2) = f (x1,−x2). It is easy to obtain that E

(
X2

1 X2
2

)
=0.5

{(
1 + 2ρ2

)
+
(
1 + 2(−ρ)2

)}
, E
(
X2

1

)
E
(
X2

2

)
= 1 by using a calculation scheme displayed in [2, p. 482]. That is, Proposition 6 does not state that X1, X2 are inde-
pendent.

Remark 2. In order to propose a characterization of symmetry by moment properties, Ushakov [33] applies Condition
(i) of Proposition 6 as an essential requirement.

Remark 3. In some classes of x’s distributions, we can significantly simplify Proposition 6’s conditions. For example,
we can assume that x is from an infinity divisible distribution. For an extensive review and examples related to infinity
divisible distributions, we refer the reader to Bose et al. [5]. In this case, Condition (i) can be eliminated and, by virtue
of Pierre [24]’s Theorem 1, we can fix n = 1, k = 1 in the equation E

(
X2n

1 X2k
2

)
= E
(
X2n

1

)
E
(
X2k

2

)
.

The following question is:
Question 5. We have the univariate linear projection of the multivariate statement f (x1, x2) = f (−x1,−x2). Can we
develop univariate projections of the property f (x1, x2) = f (−x1, x2) = f (x1,−x2)?
It seems that to investigate Question 5, we need a kind of “second order” linear combinations. To this end, we define
the linear combination V (b1, b2, b3) = b1X1 + b2X2 + b3X1X2 with b1, b2, b3 ∈ R1, and present the following result.

Proposition 7. Assume the conditions below hold:
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(i) For any real b1, b2, b3, there exists wb > 0 such that E exp {wb |V (b1, b2, b3)|} < ∞;

(ii) any linear combination Z (a1, a2) with a1 and a2 ∈ R1, is a symmetric random variable.

Then, the following two statements are equivalent:

(iii) any linear combinations V (b1, 0, b3), V (0, b2, b3) are symmetric random variables;

(iv) φ (t1, t2) = φ (t1,−t2), φ (t1, t2) = φ (−t1, t2), for all tk ∈ R1, k ∈ {1, 2}.

The proof is deferred to the Appendix.
Note that assertion (iii) of Proposition 7 is somewhat weaker than to require that the vector

[V (b1, 0, b3) ,V (0, b2, b3)]⊤ is from a symmetric distribution.

Remark 4. In a similar manner to testing symmetry showed in Section 3, Propositions 3 - 7 can be employed for
assessing a hypothesis of independence with symmetric alternatives (see Section 5, in this context). For example,
various studies related to symmetric models’ errors, e.g., based on repeated measurements, as well as evaluations
of symmetric gambles consider tests for independence of symmetric random variables. Note also that, according to
Jogdeo [14], the considered class of distributions S is used in various applications related to testing hypotheses of
independence.

2.2. Multivariate Cases

Let x denote a p-dimensional random vector
[
X1, . . . , Xp

]⊤
and Z (a) = a⊤x be a linear combination of x’s com-

ponents, where a real valued vector a =
[
a1, ..., ap

]⊤
. Assume that φ, f are the characteristic and density func-

tions of x, respectively. The distribution of x is symmetric, Pr
(
X1 ≤ u1, ..., Xp ≤ up

)
= Pr

(
−X1 ≤ u1, ...,−Xp ≤ up

)
,

ui ∈ R1, i ∈ {1, ..., p}, iff φ is symmetric, φ
(
t1, ..., tp

)
= φ
(
−t1, ...,−tp

)
, ti ∈ R1, i ∈ {1, ..., p}, e.g., [33].

The p−dimensional extension of Proposition 1 obviously holds. Regarding the statement of Proposition 2, in the
p−dimensional case, we can consider various scenarios, for example, (A): φ

(
t1, t2, t3, ..., tp

)
= φ
(
−t1, ...,−tm, tm+1..., tp

)
,

1 ≤ m < p ; or (B): φ
(
t1, t2, t3, ..., tp

)
= φ
(
−t1, t2, t3, ..., tp

)
= φ
(
t1,−t2, t3, ..., tp

)
= · · ·= φ

(
t1, t2, ..., tp−2,−tp−1, tp

)
. In

principle, the mechanisms established in Section 2.1 could be used to study cases defined in a similar manner to (A)
and (B). In Section 2.2, we confine our main attention to Scenario (A)−type−fashions, without loss of generality.
Scenarios similar to (A) can represent ”jointly symmetric” vectors and their ”jointly symmetric” components.

Let Z (a) be symmetric, for all a ∈ Rp. Then, X1, ..., Xp are symmetric, Z
(
[a1, .., am, 0, ..., 0]⊤

)
is symmetric,

E sin
(∑m

i=1 tiXi

)
= 0, and

φ
(
t1, ..., tp

)
= E cos

(∑p

i=1
tiXi

)
= E cos

(∑p

i=m+1
tiXi −

∑m

i=1
tiXi

)
− 2E sin

(∑p

i=m+1
tiXi

)
sin
(∑m

i=1
tiXi

)
.

Thus, we obtain Scenario (A), if X1, ..., Xm are independent of Xm+1, ..., Xp. In a similar manner to the analysis related
to Lemma 1, we have E sin

(∑p
i=m+1 tiXi

)
sin
(∑m

i=1 tiXi

)
= 0, in (A). Hence, φ

(
t1, t2, ..., tp

)
= E
{
cos
(∑p

i=m+1 tiXi

)
cos
(∑m

i=1 tiXi

)}
. In order to derive a p−dimensional version of Proposition 6, we assume that, for any real a ∈ Rp,

there exists wa > 0 such that Eexp {wa |Z (a)|} < ∞, and present

φ
(
t1, t2, t3, ..., tp

)
= E

[∑∞

k=0

∑∞

n=0
(−1)n+k

(∑p

i=m+1
tiXi

)2n(∑m

i=1
tiXi

)2k
/ {(2n)!(2k)!}

]
= E

 ∞∑
k=0

∞∑
n=0

(−1)n+k
{∑

rm+1+···+rp=2n

∏p

i=m+1
(tiXi)ri (ri!)−1

} {∑
r1+···+rm=2k

∏m

j=1
(tiXi)ri (ri!)−1

}]
,

where the Multinomial theorem is employed and, e.g., the notation
∑

rm+1+···+rp=2n means the summation is taken
over all sequences of integers rm+1, ..., rp ≥ 0 such that rm+1 + · · · + rp = 2n. Thus, Scenario A with the require-
ment E

(∏p
i=m+1 Xri

i

) (∏m
j=1 Xr j

i

)
= E
(∏p

i=m+1 Xri
i

)
E
(∏m

j=1 Xr j

j

)
,
∑p

i=m+1 ri=2n,
∑m

i=1 ri=2k, for all integers n, k leads to

φ
(
t1, ..., tp

)
= Ecos

(∑p
i=m+1 tiXi

)
Ecos

(∑m
i=1 tiXi

)
that is to say X1, ..., Xm are independent of Xm+1, ..., Xp.
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In order to extend Proposition 5, we consider, for example, the set of distributions

S =

{
F : F (x1, x2, x3) ≥

∏3

i=1
Pr (Xi ≤ xi), for all xk ∈ R1, k ∈ {1, 2, 3}

}
that is the main object of Theorem 3 of Jogdeo [14]. It turns out that, the claim: the triple x has a distribution from S,
E|Xi|

3 < ∞, i ∈ {1, 2, 3}, EXiX j = EXiEX j, 1 ≤ i , j ≤ 3, and EX1X2X3 = EX1EX2EX3 implies the fact: X1, X2, X3 are
independent. In the context of Scenario B with p = 3, we have, for variables a, b with values of 0 or 1,

EX1Xa
2 Xb

3 =

∫ ∞
−∞

∫ ∞
−∞

xa
2xb

3

∫ ∞
−∞

x1 f (x1, x2, x3)dx1dx2dx3

=

∫ ∞
−∞

∫ ∞
−∞

xa
2xb

3

{∫ 0

−∞

x1 f (x1, x2, x3)dx1 +

∫ ∞
0

x1 f (x1, x2, x3)dx1

}
dx2dx3 = 0,

since f (x1, x2, x3) = f (−x1, x2, x3). This means EX1 = EX1X2 = EX1X3 = EX1X2X3 = 0. Similarly, we obtain that
EX2 = EX2X3 = 0. Hence, if we have that Z (a) is from a symmetric distribution, for all a ∈ R3, x’s distribution
belongs to S and E|Xi|

3 < ∞, i = {1, 2, 3}, then φ (t1, t2, t3) = φ (−t1, t2, t3) = φ (t1,−t2, t3) if and only if X1, X2, X3 are
independent.

To exemplify a concept for extending Proposition 7, we consider the triple x, Scenario A with m = 1, p = 3, the
linear combination V (b1, ..., b6) =

∑3
i=1 biXi + b4X1X2 +b5X1X3 +b6X2X3 and show the following proposition.

Proposition 8. Assume the conditions below hold:

(i) For any real bi, 1 ≤ i ≤ 6, there exists wb > 0 such that E exp {wb |V (b1, ..., b6)|} < ∞;

(ii) any linear combination Z (a) is a symmetric random variable.

Then, the following two statements are equivalent:

(iii) any linear combinations V (0, b2, b3, b4, 0, 0), V (b1, b2, 0, 0, b5, 0), V (0, b2, b3, 0, b5, 0), V (b1, b2, 0, 0, 0, b6) are
symmetric random variables;

(iv) φ (t1, t2, t3) = φ (−t1, t2, t3), φ (t1, t2, t3) = φ (t1, t2,−t3), for all tk ∈ R1, k ∈ {1, 2, 3}.

The proof is deferred to the Appendix.
Note that assertion (iii) of Proposition 7 means the vectors [X1, X1X2]⊤ and [X2, X1X2]⊤ are symmetric, whereas, to

consider the trivariate scenario of Proposition 8, we need to address the vectors [X2, X3, X1X2]⊤,..., [X1, X2, X2X3]⊤ in
the symmetry context. Assume the triple x has a distribution from S , satisfying Conditions (i) and (ii) of Proposition 8.
In this case, claim (iv) leads to conclude that X1, X2, X3 are independent, in a similar manner to the explanations shown
above Proposition 8. We have, for example, that

φ (t1, t2, t3) = E cos (t1X1 + t2X2 + t3X3) = E cos (−t1X1 + t2X2 + t3X3) − 2E sin (t1X1) sin (t2X2 + t3X3)

with E sin (t1X1) = 0, under Condition (ii). Then, the mutual independence of X1, X2, X3 implies (iv), where, e.g.,
φ (−t1, t2, t3)= E cos (−t1X1 + t2X2 + t3X3).

Remark 5. Proposition 8 can yield an extension of the statement of Remark 4 with respect to testing for independence
of symmetric random vectors.

3. The DBELR test for treatment effects

In this section, to display an efficient applicability of the linear projections related to joint symmetry, we develop
and examine the multivariate DBELR procedure for detecting treatment effects. In Section 3.1, we first briefly in-
troduce the univariate DBEL concept, for completeness sake. In Section 3.2, the multivariate DBELR procedure is
developed and its type I error rates and power are analyzed.
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3.1. The Univariate Case Revisited
As background relative to the development of the new test we outline the classic empirical likelihood (EL) ap-

proach. Assume Z1, ...,Zn are independent identically distributed (i.i.d.) univariate random variables with correspond-
ing distribution function F. The classic EL has the distribution function−based form

∏n
i=1 {F(Zi) − F(Zi−)}. An

empirical estimator of this likelihood is Lp =
∏n

i=1 pi, where the components, probability weights, pi, i ∈ {1, ..., n},
maximize Lp, satisfying empirical constraints, e.g.,

∑n
i=1 pi = 1,

∑n
i=1 piZi = 0. Computation of pi, i ∈ {1, ..., n} is com-

monly a simple exercise in the use of Lagrange multipliers. The EL technique can be applied to test for hypotheses
regarding parameters (e.g., moments) of distributions (e.g., Owen [23], Vexler et al. [37]).

The Neyman−Pearson Lemma states that density−based likelihood ratios can introduce most powerful tests. This
motivates nonparametric developments in the “distribution function−based” EL manner, e.g., [21, 38]. The idea is
to approximate the likelihood L f =

∏n
i=1 f (Zi), f (u) = dF(u)/du, rewriting L f as L f =

∏n
i=1 fi, fi = f (Z(i)), where

Z(1) ≤ Z(2) ≤ ... ≤ Z(n) are the order statistics based on Z1, ...,Zn, and f1, ..., fn are estimated by maximizing L f given
the empirical constraint related to the rule

∫
f (u)du = 1. This DBEL concept has been successfully used to propose

and apply various null−distribution−free testing strategies, e.g., [11, 31, 40].
Consider a problem of testing the null hypothesis H0: F = F0, F0(u) = 1 − F0(−u), for all −∞ < u < ∞, against

H1 : F = F1, F1(u) , 1−F1(−u), for some −∞ < u < ∞, where F0 and F1 are unknown. Let f1, f0 denote the density
functions of Z under H1 and H0, respectively. In this framework, Vexler at al. [35] introduced the following DBELR
testing approach. It is shown that the likelihood ratio

∏n
i f1 (Zi) / f0 (Zi) can be approximated by the test statistic

Vn (Z1, ...,Zn) = min
a(n)≤m≤b(n)

n∏
j=1

2m
{1 − (m + 1) / (2n)}
n ∆ jm (Z1, ...,Zn)

, a(n) = n0.5+δ, b(n) = min(n1−δ, n/2), δ ∈ (0,1/4),

where ∆ jm (Z1, ...,Zn) =
∑n

i=1

{
I
(
Zi ≤ Z( j+m)

)
+ I
(
−Zi ≤ Z( j+m)

)
− I
(
Zi ≤ Z( j−m)

)
− I
(
−Zi ≤ Z( j−m)

)}
/2n and Z( j) =

Z(1), if j ≤ 1, Z(k) = Z(n), if k ≥ n. The null hypothesis is proposed to be rejected for large values of Vn (Z1, ...,Zn).

3.2. The multivariate test
Suppose the researcher observes data points ix =

[
X1i, ..., Xpi

]⊤
, i ∈ {1, ..., n}, independent realizations of vector

x =
[
X1, ..., Xp

]⊤
, and is interested in testing H0 : x d

= − x versus H1 : x
d
, − x. In order to test for H0, we may

use the statistic Vn (X1(u), ..., Xn(u)), where the vector u =
[
u1, ..., up

]⊤
∈ RP and the univariate linear combinations

Xi(u) = u⊤ (iX), i ∈ {1, ..., n}. A concept associated with the Kolmogorov−Smirnov principle for measuring distances
between nonparametric hypotheses leads us to propose employing large values of the test statistic

TS n = maxu∈Rp Vn (X1(u), ..., Xn(u)) ,

for discriminating between H0 and its alternative hypothesis.
The significant difficulty in computing TS n is related to an implementation of the maximum of Vn (X1(u), ..., Xn(u))

over all values of u1, ..., up ∈ R1. We can remark that, e.g., to implement univariate Kolmogorov−Smirnov type
statistics, algorithms for conducting maximums employed in the corresponding statistics can be performed by using
finite numbers of arguments based on observations. In our case, we directly apply the method introduced by [36].
Toward this end, we recursively define the following system of notations. Let JW, j = (i1, j1, ..., i2 j−1 , j2 j−1 ), Jc

W, j =

(i2 j−1+1, j2 j−1+1, ..., i2 j , j2 j ), JU, j = (i1, r1, ..., i2 j−1 , r2 j−1 ) and Jc
U, j = (i2 j−1+1, r2 j−1+1, ..., i2 j , r2 j ) denote integer row−vectors

with the components 1 ≤ iq , rq ≤ n, 1 ≤ jq ≤ n, where q ∈ {1, ..., 2 j} and j ∈ {1, ..., p − 1}. We can write JW,1 = (i, j)
and JU,1 = (i, r), for the sake of simplicity. When JW, j , Jc

W, j and JU, j , Jc
U, j, we denote, for k ∈ {1, ..., p − 1}, the

sets of the random variables Wk
(
JW,1
)
=
(
Xki + Xk j

)
/
(
−Xp j − Xpi

)
, Uk
(
JU,1
)
= (Xki − Xkr) /

(
Xpr − Xpi

)
, and then,

for j ∈ {2, ..., p − 1}, k ∈ {1, ..., p − j}, Wk

(
JW, j

)
=
{
Wk

(
JW, j−1

)
−Wk

(
Jc

W, j−1

)}
/
{
Wp− j+1

(
Jc

W, j−1

)
−Wp− j+1

(
JW, j−1

)}
andUk

(
JU, j

)
=
{
Uk

(
JU, j−1

)
− Uk

(
Jc

U, j−1

)}
/
{
Up− j+1

(
Jc

U, j−1

)
− Up− j+1

(
JU, j−1

)}
.

In this framework, for example, the notation Wk
(
JW,1
)

means the sequence

(Xk1 + Xk1)
(
−Xp1 − Xp1

)−1
, (Xk1 + Xk2)

(
−Xp2 − Xp1

)−1
, . . . , (Xkn + Xkm)

(
−Xpm − Xpn

)−1
.

We are now in a position to show the result below.
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Table 1: Critical Values of the Proposed Test Statistic, log (TS n), defined in Proposition 9.

Significance level α Significance level α

n 0.1 0.05 0.01 n 0.1 0.05 0.01
10 4.073 5.122 7.297 45 4.204 4.817 6.242
15 3.579 4.427 6.758 50 4.257 4.838 6.307
20 3.726 4.463 6.355 55 4.274 4.878 6.337
25 3.850 4.538 6.345 60 4.428 5.056 6.551
30 3.864 4.498 6.179 70 4.631 5.215 6.661
35 3.892 4.486 5.928 80 4.800 5.388 6.782
40 4.066 4.698 6.376 100 5.185 5.769 7.187

Proposition 9. The test statistic TS n can be represented in the form

TS n = max(u1,...,up)∈⋃p
j=1 B j

Vn (X1(u), ..., Xn(u)) ,

where sets B1, ..., Bp contain elements defined via the following algorithms: for s = 1, ..., p − 1,

Bs =
[(

u1, ..., up

)
: if s > 1, u1 = ... = us−1 = 0; us = 1; for d = 1, ..., p − s, given u1, ..., us+d−1, select

us+d ∈

s+d−1∑
h=s

Wh

(
JW,p−d−s+1

)
uh ,

s+d−1∑
h=s

Uh

(
JU,p−d−s+1

)
uh


 and Bp =

{(
u1, ..., up

)
: u1, ..., up−1 = 0, up = 1

}
.

The proof is deferred to the Appendix.
We refer the reader to [36], for more details, examples and explanations related to the notations used in Proposi-

tion 9.
Thus, we propose to reject H0 as log (TS n) > Cα, where Cα is an α−level test threshold.
In order to control the Type I error of the proposed test we consider the following statement.

Significance levels of the proposed test. It is clear that, the proposed test is exact, the null distribution of the test
statistic log (TS n) is independent of underlying data H0−distributions. For example, in Table 1, we tabulate the
critical values, Cα, for the proposed test, for different sample sizes and p = 2 using an R code (R Development Core
Team [25]). The relevant R code is displayed in the supplementary materials. Note that we executed extensive Monte
Carlo evaluations that confirmed the robustness of the proposed test with respect to the values of δ ∈ (0, 0.25) used in
the definition of TS n. For practical purposes, we suggest δ = 0.1. The DBEL literature confirms that power properties
of DBEL type test statistics do not differ substantially for values of δ ∈ (0, 0.25), e.g., [31, 38]. To obtain Table 1’s
results, we derived the Monte Carlo percentiles of the H0−distribution of the test statistic log (TS n) with δ = 0.1 based
on 20, 000 samples of ix = [X1i, X2i]⊤ ∼ N (0, I2), i ∈ {1, . . . , n}, where Ip is a p−dimensional identity matrix.

According to the statement below, the proposed test is an asymptotically consistent procedure.
Consistency. To show that the present DBELR procedure is an asymptotic power one test, we use the following
notations. Let Prk and Ek denote the probability measure and expectation under Hk, k = 0, 1. Denote the density
functions fk(t; u) = dPrk {X1(u) ≤ t} /dt, k ∈ {0, 1}. Proposition 10 indicates the consistency of the proposed test.

Proposition 10. Let x ∈ Rp be an absolutely continuously distributed vector. Assume there exists a vector u0 =[
u01, ..., u0p

]⊤
such that the expectations E

[
log { fk (X1 (u0) ; u0)}

]
, k = 0, 1, are finite. Then, for a positive threshold

C > 0, we have Pr1

{
n−1 log (TS n) > C

}
→ 1, whereas Pr0

{
n−1 log (TS n) > C

}
→ 0, as n→ ∞.

The proof is deferred to the Appendix.

Remark 6. Corresponding to Remark 4, in order to test for that X1 and X2 are independent, we can use the test
statistics TS kn = maxu∈R2 Vn (Yk1(u), ...,Ykn(u)), k ∈ {1, 2}, where Yki(u) = u⊤

(
[Xki, X1iX2i]⊤

)
, i ∈ {1, ..., n}.

Testing for joint treatment effects. Assume observed vectors iy =
[
Y1i, ...,Ypi

]⊤
and iq =

[
Q1i, ...,Qpi

]⊤
display

pre- and post-treatment measurements related to individual i, i ∈ {1, ..., n}. In order to detect joint treatment effects
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Table 2: The Monte Carlo power of the tests defined in Section 3.2 and [7] (α = 0.05).

Design Test/ n 12 20 50 70 100
A1 DBELR 0.050 0.048 0.049 0.049 0.049

C-test 0.043 0.059 0.053 0.051 0.058
A2 DBELR 0.067 0.060 0.237 0.391 0.632

C-test 0.054 0.060 0.074 0.081 0.112
A3 DBELR 0.102 0.187 0.646 0.884 0.994

C-test 0.083 0.113 0.220 0.338 0.474
A4 DBELR 0.084 0.166 0.945 0.999 1

C-test 0.033 0.106 0.109 0.112 0.123
A5 DBELR 0.124 0.220 0.965 0.999 1

C-test 0.037 0.099 0.112 0.098 0.112

based on {iy, iq} , i ∈ {1, ..., n}, we can perform the procedure below. Following, for example, Section 6 of [13], we
first reduce the underlying data to be based on p-dimensional (contrast) observations, ix =

[
Q1i − Y1i, ...,Qpi − Ypi

]⊤
,

i ∈ {1, ..., n}, and then test the hypothesis that ix, i ∈ {1, ..., n}, are symmetrically distributed with center of symmetry
0. In this framework, the Hotelling T 2 test can be employed (Seber [28]), provided that ix, i ∈ {1, ..., n}, are from a
multivariate normal distribution, whereas the proposed DBELR test can be used in a nonparametric manner.

3.3. Numerical Simulations

We conducted a Monte Carlo study to explore the performance of the proposed testing strategy. In terms of
evaluations of nonparametric decision−making procedures, we note that: in the considered framework, (1) there are
no most powerful tests; and (2) it can be assumed that reasonable tests for symmetry based on large samples provide
relatively equivalent and powerful outputs.

To judge experimental characteristics of the proposed test, we obtained numerical results executing the recently
developed procedure of [7], say C−test. We are grateful for the authors of the paper [7] for providing relevant
programming codes to implement their test strategy.

We generated 10, 000 independent samples of sizes n ∈ {12, 20, 50, 70, 100} from: (A1) the bivariate Pearson
type VII symmetric distribution (Johnson [15, pp. 117-121]) with parameters m = 1.7, µ = 0, and Σ = I; (A2)
the asymmetrical Clayton copula distribution (R package “copula”, R Development Core Team [25]) with N(0, 1)
−marginal distributions and parameter θ = 6 ; (A3) x = [X1, X2]⊤, where X1 ∼ N(0, 1), X2 ∼ Uni f (−1, 0.7) ; (A4)
X1 = ξ1 − exp(10), X2 ∼ Uni f (−1, 1), where ξ1 ∼ LN(10, 1) ; (A5) X1 = exp(10 + ξ2) − exp(10), X2 = ξ3, where[
ξ2, ξ3

]⊤
∼ N2(0, J) with covariance matrix J =

[
σi j

]
, 1 ≤ i, j ≤ 2, σ11 = σ22 = 1, σ12 = σ21 = 0.5.

Table 2 shows the results of the power evaluations of the proposed DBELR test and C−test, when the significance
level, α, of the tests for H0 : x d

= − x was supposed to be fixed at 5%.
Design A1 corresponds to H0 and represents a heavy−tailed symmetric distribution of x = [X1, X2]⊤, where

random variables X1 and X2 are uncorrelated but dependent. In this case, it seems that the permutation type technique
for controlling the type I error rate applied in C−test may not work accurately. Table 2 demonstrates that, under
A2−A5, the DBELR strategy is somewhat more powerful than the distance−based weighted decision-making policy
developed by Chen et al. [7]. In A2, the model of x’s distribution assigns a higher probability to joint extreme negative
events than to joint extreme positive events. In this case, the proposed test has approximately a 69%−82% power
gain as compared to C-test when n ≥ 50. Design A3 is a relatively simple scenario of H1. Designs A4, A5 represent
observed vectors with independent/dependent elements from skewed and relatively heavy-tailed distributions. In these
cases, the DBELR test provides the power that is about 9 times more than that of C-test, when n ≥ 50. We can suppose
that the C-test is biased under A4, A5 with n=12.

Based on the Monte Carlo results, we conclude that the proposed test exhibits high and stable power characteristics
under different designs of alternatives.

12



4. Data Analysis

We briefly demonstrate the present DBELR method for testing with an examination of the group-based therapy
for children with ADHD and SMD, as described in Section 1. A total of n = 17 children with ADHD and SMD
were evaluated during the experimental 11-week group therapy program. Define vectors iu = [U1i,U2i]⊤ and iv =
[V1i,V2i]⊤, i ∈ {1, ..., n}, to represent the couple [CDRS, YMRS]−observations obtained with respect to Baseline and
Endpoint, respectively. The estimated values of E (iu), E (iv), var (iu) and var (iv) are [32.06, 13.71]⊤, [25.24, 10.29]⊤,[
35.56 3.96
3.96 25.72

]
and
[
14.94 4.18
4.18 27.22

]
, respectively. We performed the proposed test based on ix = iu − iv, i ∈ {1, .., n},

to detect an effect of the group-based therapy program. The test statistic log (TS n) with δ = 0.1 had a value of 11.477
corresponding to p-value= 0.0003. It was observed that Chen et al. [7]’s test (C-test) provided p-value= 0.0017 being
coherent with the DBELR test, in this case.

We conducted a bootstrap type data-driven study to examine the proposed test using ideas introduced by Stigler [27].
The considered tests based on the full dataset reject the null hypothesis, indicating a strong evidence of the [CDRS,
YMRS]−treatment effects. Thus, it can be assumed that the rejection rate of the null hypothesis for a test based on
samples (with relatively small sizes) from the data, ix, i ∈ {1, .., n}, can be studied in the context of the efficiency
(i.e., the power) of the test. Toward this end, the following procedure was executed. From the full dataset, samples
with the sizes 10 and 15 were randomly selected, in order to be tested for H0 : x d

= − x at 5% level of significance.
We repeated this strategy 15, 000 times calculating the frequencies of the events log (TS 10) > C0.05 = 5.122 and
log (TS 15) > C0.05 = 4.427. In this framework, the DBELR test did not reject the null hypothesis in 5,175 (the case of
n=10) and 473 (n= 15) events, whereas C−test did not reject H0 in 7,734 and 709 events, respectively. This indicates
that our method is more sensitive and reliable as compared to C−test in this data-driven study.

Regarding the dataset used in the example shown in Section 1, we report p−values of 0.033 and 0.045 provided
by the DBELR test and C-test, respectively.

Then, the DBELR test can be recommended to be applied as a primary statistical tool in ADHD and SMD studies.

5. Concluding Remarks

For characterizing symmetry of random vectors’ distributions, we have proposed using linear combinations of
components of the vectors. We have considered the statements: (S1) x d

= − x, and (S2) x d
= − x d

=Ax, where the ma-
trix A = diag

(
h1, . . . , hp

)
, |hi| = 1, i ∈ {1, ..., p, } −p <

∑p
i=1 hi < p. Most of our propositions have regarded bivariate

symmetry, since: (a) bivariate cases play an important role in both theory and practice of statistics; (b) the presented
analysis is simple, and can be easily extended for more general scenarios; and (c) we could not include all diversity
of symmetry forms and concepts related to general multidimensional settings. We have involved examples to clarify
the explanations of our research points. Propositions 2− 5 have treated a one-to-one mapping between Statement S2,
x d
= −x d

=Ax, and independence under scenarios when zero correlation implies or does not imply independence. Propo-
sitions 1, 7 and 8 have determined forms of linear projections of Statements S1 and S2. The established univariate
characterizations of S1 and S2 can allow the reduction of the problem of testing S1 or S2 to a substantially simpler one
via employing one-dimensional data points. We have exemplified the usefulness of this approach by developing an
efficient nonparametric exact test for joint treatment effects. An algorithm for implementing linear projection-based
tests has been proven. In this framework, we have proposed the consistent DBELR test for Statement S1. Its effective-
ness in maintaining relatively high power has been demonstrated using simulation and a real data example in bivariate
scenarios based on small samples from heavy-tailed distributions.

In the present paper we have touched the problem of characterizing the multivariate independence concept.
Note that statistical aspects of independence are very complicated issues in characterizing, evaluations and testing
(Lehmann [17]). In future studies, nonparametric tests for independence between random vectors via the proposed
characterizations of symmetry are planned to be proposed and extensively examined. In this context, it seems that the
DBEL method is an appropriate approach, since its likelihood structure. Thus, according to Remarks 4, 6, the hy-
pothesis: symmetric X1 and X2 are independent can be tested exactly using the statistic Qn = log (TS 1n)+ log (TS 2n).
In the supplementary materials, we show preliminary experimental evaluations of the Qn-based test. Note that, the
DBEL approach and the classical EL method have a similar likelihood-type-rationale. That is, we can combine the
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DBEL and EL techniques to develop a test for independence, e.g., using Proposition 6, when the EL approach can test
EX2r

1 X2ℓ
2 = EX2r

1 EX2ℓ
2 , where r, ℓ ≥ 0. Section 2.2 can provide ingredients to create decision-making procedures for

examining independence of random vectors. We think that, in several situations, in order to generalize the statement
above in a testing independence context, it is reasonable to transform observed vectors to present realizations from a
symmetric multivariate distribution (e.g., [20]). In this case, the present paper can be used for developing general tests
for independence based on transformed data points, releasing the symmetry requirement. Further studies are needed
to evaluate the proposed approach in these frameworks.

We note also that developments of univariate projections of multivariate statements dealing with x d
= −x d

=Ax can
be of a theoretical interest.

We hope to convince the readers of the benefits of studying different forms of symmetry of multivariate distribu-
tion functions and their characterizations applied to creating powerful decision-making mechanisms.
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Appendix. Proofs

Proof of Proposition 4. Assuming Statement (b), we apply Proposition 2 to obtain φ (t1, t2) = φ (t1,−t2) and φ (t1, t2) =
φ (−t1, t2) that is Statement (a). Now, if φ (t1, t2) = φ (t1,−t2) and φ (t1, t2) = φ (−t1, t2), then, e.g., f (−x1, x2) =
f (x1, x2). In this case, q (−x1, x2) = q (x1, x2), since f1 (−x1) = f1 (x1), when Z(a1, a2) is symmetric for all a1, a2.
However, by (3) we have the condition q (−x1, x2) = −q (x1, x2). Thus, q (x1, x2) = 0, i.e., f (x1, x2) = f1 (x1) f2 (x2)
that completes the proof.

Proof of Proposition 5. If X1, X2 are independent, we apply Proposition 2. If φ (t1, t2) = φ (t1,−t2) = φ (−t1, t2),
then the proof is implemented by using (1) and the fact that the uncorrelatedness of X1, X2 is equivalent to their
independence, when x’s distribution is a member of S (see, [14, p. 435]).

Proof of Proposition 6. It is clear that, if Condition (ii) holds and X1, X2 are independent, then Proposition 2 gives
φ (t1, t2) = φ (t1,−t2) = φ (−t1, t2). Now, if φ (t1, t2) = φ (−t1, t2) = φ (t1,−t2), in a similar manner to (2), we obtain
that E

(
X2n−1

1 X2k−1
2

)
= E
(
X2n−1

1

)
E
(
X2k−1

2

)
= 0, for all integers n ≥ 1 and k ≥ 1. Noting that Condition (i) leads

φ, φ1, φ2 to be analytic characteristic functions (e.g., Ushakov [32]), we apply Theorem 2 of [4] to complete the proof
of Proposition 6.

Proof of Proposition 7. Suppose claim (iii) is satisfied. By virtue of assumption (ii) and Proposition 1, we have
that the characteristic function φ (t1, t2) = E cos (t1X1 + t2X2). Since cos (x − y) − cos (x + y) = 2 sin (x) sin (y),
we can represent φ (t1, t2) = E cos (t1X1 − t2X2) −2E sin (t1X1) sin (t2X2). By using Taylor’s theorem, we consider
E sin (t1X1) sin (t2X2) = E

∏2
i=1

(
tiXi − t3

i X3
i /3! + t5

i X5
i /5! − · · ·

)
, focusing on E(X1X2)2k+1X2ℓ

1 and E(X1X2)2k+1X2ℓ
2 with

k and ℓ ∈ [0, 1, 2, ...]. Let f121 (u, x1) define a density function of the vector [(X1X2) , X1]⊤. By virtue of claim (iii) and
Proposition 1, f121 (u, x1) = f121 (−u,−x1). Then,

E(X1X2)2k+1X2ℓ
1 =

∞∫
−∞

∞∫
−∞

u2k+1x2ℓ
1 f121 (u, x1) dudx1 =


0∫

−∞

0∫
−∞

+

0∫
−∞

∞∫
0

+

∞∫
0

0∫
−∞

+

∞∫
0

∞∫
0

 u2k+1x2ℓ
1 f121 (u, x1) dudx1,
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where

0∫
−∞

0∫
−∞

u2k+1x2ℓ
1 f121 (u, x1) dudx1 =

0∫
−∞

0∫
−∞

u2k+1x2ℓ
1 f121 (−u,−x1) dudx1

=

0∫
∞

0∫
∞

(−z1)2k+1(−z2)2ℓ f121 (z1, z2) d (−z1) d (−z2) = −

∞∫
0

∞∫
0

u2k+1x2ℓ
1 f121 (u, x1) dudx1

as well as

0∫
−∞

∞∫
0

u2k+1x2ℓ
1 f121 (u, x1) dudx1 =

0∫
−∞

∞∫
0

u2k+1x2ℓ
1 f121 (−u,−x1) dudx1

=

0∫
∞

−∞∫
0

(−z1)2k+1(−z2)2ℓ f121 (z1, z2) d (−z1) d (−z2) = −

∞∫
0

0∫
−∞

u2k+1x2ℓ
1 f121 (u, x1) dudx1.

Then E(X1X2)2k+1X2ℓ
1 = 0. Similarly, we obtain E(X1X2)2k+1X2ℓ

2 = 0. Therefore, E {sin (t1X1) sin (t2X2)} = 0.
These lead to φ (t1, t2) = E cos (t1X1 + t2X2) = E cos (t1X1 − t2X2) = φ (t1,−t2) and φ (t1, t2) = E cos (t1X1 + t2X2) =
E cos (−t1X1 + t2X2) = φ (−t1, t2) that is Statement (iv).

Suppose claim (iv) is satisfied. Then, the distribution

Pr {X1X2 ≤ u1, X1 ≤ x1} =

∞∫
−∞

∞∫
−∞

I {vg ≤ u1, v ≤ x1} f (v, g) dvdg =

∞∫
−∞

∞∫
−∞

I {vg ≤ u1, v ≤ x1} f (−v, g) dvdg

=

∞∫
−∞

−∞∫
∞

I {−zg ≤ u1,−z ≤ x1} f (z, g) d (−z) dg =

∞∫
−∞

∞∫
−∞

I {−zg ≤ u1,−z ≤ x1} f (z, g) dzdg.

That is to say, Pr {X1X2 ≤ u1, X1 ≤ x1} = Pr {−X1X2 ≤ u1,−X1 ≤ x1} and f121 (u, x1) = f121 (−u,−x1). This leads to

Pr {V (b1, 0, b3) ≤ y} =
∫∫

I {b1x1 + b3u ≤ y} f121 (u, x1) dudx1 =

∫∫
I {b1x1 + b3u ≤ y} f121 (−u,−x1) dudx1

=

∫
I {−b1z1 − b3z2 ≤ y} f121 (z2, z1) dz2dz1 = Pr {−V (b1, 0, b3) ≤ y} .

This way can be easily modified to verify that Pr {V (0, b2, b3) ≤ y} = Pr {−V (0, b2, b3) ≤ y}. Thus, claim (iii) is
implied by (iv). The proof is complete.

Proof of Proposition 8. According to the proof strategy of Proposition 7, we first suppose that claim (iii) is satisfied.
By assumption (ii), the characteristic function φ (t1, t2, t3) = E cos (t1X1 + t2X2 + t3X3). We represent

φ (t1, t2, t3) = E cos (t2X2 + t3X3 − t1X1) − 2E sin (t1X1) sin (t2X2 + t3X3) .

Using Taylor’s theorem and the binomial formula, we obtain that

E sin (t1X1) sin (t2X2 + t3X3) = E
{∑∞

k=0

(−1)k(t1X1)2k+1

(2k + 1)!

}∑∞

n=0
(−1)n

∑2n+1

j=0

t j
2t2n+1− j

3 X j
2X2n+1− j

3

j!(2n + 1 − j)!

 .
Then, we can focus on EX2k+1

1 X j
2X2n+1− j

3 . Assuming, for example, that 0 < j < 2n + 1, we write the following two
situations:
(a) X2k+1

1 X j
2X2n+1− j

3 = (X1X2)2k+1X j−2k−1
2 X2n+1− j

3 I ( j − 2k − 1 ≥ 0) +(X1X2) jX2k+1− j
1 X2n+1− j

3 I (2k − j + 1 > 0), if j is
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odd; and
(b) X2k+1

1 X j
2X2n+1− j

3 = (X1X3)2k+1X j
2X2n− j−2k

3 I (2n − j − 2k ≥ 0) +(X1X3)2n+1− j+1X2k−2n+ j
1 X j

2I (2k − 2n + j > 0), if j is
even. In cases (a) and (b), we can find integers ℓ, r > 0 such that j = 2ℓ + 1 and j = 2r, respectively. Then, (a)
X2k+1

1 X j
2X2n+1− j

3 = (X1X2)2k+1X2ℓ−2k
2 X2n−2ℓ

3 I (2ℓ − 2k ≥ 0) +(X1X2)2ℓ+1X2k−2ℓ
1 X2n−2ℓ

3 I (2k − 2ℓ > 0), and (b)
X2k+1

1 X j
2X2n+1− j

3 = (X1X3)2k+1 X2r
2 X2n−2r−2k

3 I (2n − 2r − 2k ≥ 0)+(X1X3)2n+1−2r+1X2k−2n+2r
1 X j

2I (2k − 2n + 2r > 0), where
2k, 2ℓ, 2r, 2n − 2ℓ, 2n − 2r are even. By (iii) of the proposition, the vectors [(X1X2) , X2, X3]⊤, [(X1X3) , X1, X2]⊤ are
symmetric. Therefore, EX2k+1

1 X j
2X2n+1− j

3 = 0 and, in this manner, we derive E sin (t1X1) sin (t2X2 + t3X3) = 0 that leads
to φ (t1, t2, t3) = E cos (t2X2 + t3X3 − t1X1), Similarly, we have φ (t1, t2, t3) = E cos (t1X1 + t2X2 − t3X3), corresponding
to claim (iv) of the proposition.

Suppose claim (iv) is satisfied. Then, e.g., the characteristic function

E exp {itV (0, b2, b3, b4, 0, 0)} =
∫ ∫ ∫

exp {it (b2x2 + b3x3 + b4x1x3)} f (x1, x2, x3) dx1dx2dx3

= E exp {itV (0,−b2,−b3, b4, 0, 0)} ,

since condition (ii) yields that the joint density function f (x1, x2, x3) = f (−x1,−x2,−x3). Then, f (x1, x2, x3) =
f (−x1, x2, x3) implies E exp {itV (0,−b2,−b3, b4, 0, 0)} = E exp {itV (0,−b2,−b3,−b4, 0, 0)}, i.e.,
E exp {itV (0, b2, b3, b4, 0, 0)} = E exp {itV (0,−b2,−b3,−b4, 0, 0)}, and V (0, b2, b3, b4, 0, 0) is symmetric. This scheme
can be easily modified to verify that claim (iii) is implied by (iv). The proof is complete.

Proof of Proposition 9. The proof is similar to that of Proposition 3 in [36] and thus omitted.

Proof of Proposition 10. To prove Proposition 10, we remark that, following Schuster [26], the concept of the test
statistic TS n development involves the nonparametric estimation F̂n(y; u) =

∑n
i=1 {I (Xi(u) ≤ y) + I (−Xi(u) ≤ y)} /2n

of the symmetric distribution Pr0 (X1(u) ≤ y). Then, we use the theorem of Dvoretzky, Kiefer and Wolfowitz (Ser-
fling [29, p. 59]), in a similar manner as in the proof scheme of [36]’s Proposition 4. This provides the statement of
Proposition 10.

SUPPLEMENTARY MATERIALS

R Code: Code for Monte Carlo computing the critical values of the null distribution of the proposed test.
Numerical Simulations: Preliminary experimental evaluations of the Qn-based test that is discussed in Section 5.
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1. ####################################################### 
####### R code to calculate the critical values of the proposed test 
######################################################## 

 

library(MASS) 
#Sample size 
n1<-35   
delta<-0.1 
Test_Stat1<- array() 
####### DBELR test statistic function ####################### 
DBEL_test1<- function(cc){ 
  txx1<- t(cc)%*%t(XX1)  #linear combination (cc) of data XX1 
  x1<- txx1[1:n1]         
  sx<-sort(x1)   
  ############################################# 
  #######obtain the test statistic############ 
  ############################################# 
  m<-c(round(n1^(delta+0.5)):min(c(round((n1)^(1-delta)),round(n1/2))))   
  a<-replicate(n1,m)           
  rm<-as.vector(t(a))            
  L<-c(1:n1)- rm               
  LL<-replace(L, L <= 0, 1 )   
  U<-c(1:n1)+ rm               
  UU<-replace(U, U > n1, n1)   
  xL<-sx[LL]                   



2 

  xU<-sx[UU]                   
  F<-ecdf(-sx)(xU)+ecdf(sx)(xU)-(ecdf(-sx)(xL)+ecdf(sx)(xL)) 
  F<-0.5*F 
  F[F==0]<-1/(n1)                
  I<-2*rm*(1-(rm+1)/(2*n1))/( n1*F )       
  ux<-array(I, c(n1,length(m)))                      
  tstat1<- log(min(apply(ux,2,prod)))               
  Test_Stat<- tstat1 
  return(Test_Stat) 
}  
############################################################ 
#The total number of Monte Carlo generations  
MC<-5000 
for(mc in 1:MC){ 
  #Simulate bivariate normal random sample 
  Sigma <- matrix(c(1,0,0,1),2,2)  
  XX1<-mvrnorm(n = n1, rep(0, 2), Sigma) 
  XX2<-(-XX1) 
  Ws<-c() 
  XXX1<- XX1 
  XXX2<- XX2 
  XXX12<-rbind(XXX1,XXX2) 
   
  #Compute linear combinations 
  for (i in 1:(length(XXX12[,1])-1)) { 
    for (j in (i+1) : length(XXX12[,1])) { 
      lz1<- XXX12[i,] 
      lz2<- XXX12[j,] 
      a2<- (lz1[1]-lz2[1])/(lz2[2]-lz1[2]) 
      Ws<- c(Ws,a2) 
    } 
  } 
   
  Ws<- unique(Ws) 
 Ws<-Ws[Ws!='Inf']  
  Ws<-Ws[Ws!='-Inf'] 
  Ws<-Ws[Ws!='NaN'] 
  Ws<- c(Ws,1,0) 
  lz_a1<- c(rep(1,length(Ws)-2),0,1) 
  xy_lab<-cbind(lz_a1,Ws) 
  #Find the maximum test statistic 
  stat<<-apply(xy_lab,1,DBEL_test1) 
  Test_Stat1[mc]<-max(stat)  
   
  #Track the number of iterations 
  print(c('mc=',mc)) 



3 

  #print the simulated 0.95 quantile 
  print(quantile(Test_Stat1,0.95)) 
} 
 
Note that, in order to generate vectors under designs A1 and A2 applied in Section 3.3, the 

following codes can be used. 

 

####A1: Pearson VII Alternative###### 
library(MASS) 
m<-1.7 
zz<-mvrnorm(n1, c(0,0), diag(x = 1, 2,2)) 
df<-2*m-2 
ss<-rchisq(n,df,ncp=0) 
Y<-df/(sqrt(ss))*zz 
XX1<- cbind(Y[,1],Y[,2]) 
 
############A2 
library(pacman) 
p_load(copula,car) 
my.cop<- archmCopula(family = "clayton", dim=2, param = 6) 
 #Choose marginal distribution and set their parameters 
 my.margins = c("norm", "norm") 
 my.parms = list(list(mean=0, sd=1), list(mean=0, sd=1)) 
 #Integrate them in one model 
 myBvd = mvdc(copula=my.cop, margins= my.margins, paramMargins = my.parms) 
 #Draw n1 random sample 
 myBvd.sim<- rMvdc(n1, myBvd) 
 XX1<- myBvd.sim 
 

Remark S1. Extensive Monte Carlo evaluations based on realizations of X  with a variety of 

sample sizes n showed that multiple uses of the R function ‘optim’ (R Development Core Team, 

2012) executed with initial values equating to different empirical quantiles of  1,..., p ku u B , 

1,..., ,k p  can significantly reduce the computation time of the proposed procedure, when 

2p  . 
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2. Numerical Simulations: Preliminary experimental evaluations of the nQ -based test that 

is discussed in Section 5. 

We carried out a Monte Carlo study to evaluate the performance of the nQ -based test, where 

1 2log( ) log( )n n nQ TS TS   with , 1, 2,knTS k  that are defined in Remark 6. The R code presented 

above can be easily modified to implement the nQ -based test. In terms of evaluations of 

nonparametric decision-making procedures, we note that: in the considered framework, there are 

no most powerful tests. 

The nQ -based test is exact, meaning that it is distribution-free under 0H , i.e. the 0H - 

distribution of nQ  does not depend on underlying distributions of symmetric and independent 1X  

and 2X . Thus, the critical values for the nQ -based test can be accurately approximated using 

Monte Carlo techniques. The generated values (10,000 replications) of the test statistic nQ  were 

used to determine the critical values 0.05C  of the null distribution of nQ  at the significance level 

0.05  : 0.05 17.160C  , if 20n  ; 0.05 22.407C  , if 50n  ; 0.05 26.510C  , if 75n  . 

In this study we attended to the following form of dependence: 

       1/22 2 2
1 2 1:   ~ (0,1), ~ (0,1), exp( / 2) 2, /

x

F X N X X N z dzx  


     . 

It is interesting to depict the following histogram related to the 2X  distribution based on 100000 

generations of 2X . 
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Table S1 shows the results of the power evaluations of the nQ -based test (“
nQ ”) and the 

classical tests (“Pearson”, “Kendall”) via the Monte Carlo study based on 10,000 replications of 

1 ,..., nX X  for the design corresponding to F at each sample size n. This study demonstrates the 

nQ -based test is superior to the considered classical tests in the scenarios under the F-design. 

The power differences between the nQ -based test and the classical tests become more substantial 

as the sample size increases.  

 

Table S1. The Monte Carlo power of the tests  5%  . 

Tests Design F  

 Sample size (n) 

     20 50 70 

nQ  0.09592326 0.400 0.6943852 
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Pearson 0.09961262 0.105 0.09452736 

Kendall 0.09610773 0.124495 0.1179815 
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