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Abstract 

The problem of characterizing a multivariate distribution of a random vector using examination 

of univariate combinations of vector components is an essential issue of multivariate analysis. 

The likelihood principle plays a prominent role in developing powerful statistical inference 

tools. In this context, we raise the question: can the univariate likelihood function based on a 

random vector be used to provide the uniqueness in reconstructing the vector distribution? In 

multivariate normal (MN) frameworks, this question links to a reverse of Cochran's theorem 

that concerns the distribution of quadratic forms in normal variables. We characterize the MN 

distribution through the univariate likelihood type projections. The proposed principle is 

employed to illustrate simple techniques for assessing multivariate normality via well-known 

tests that use univariate observations. The displayed testing strategy can exhibit high and stable 

power characteristics in comparison to the well-known procedures in various scenarios when 

observed vectors are non-MN distributed, whereas their components are normally distributed 

random variables. In such cases, classical multivariate normality tests, such as Shapiro-Wilk’s, 

Henze-Zirklers’s and Mardia’s tests, may break down completely. 

Keywords:  Characterization, Infinity divisible, Likelihood, Multivariate normal distribution, 

Projection, Quadratic form, Test for multivariate normality. 

1. Introduction 

In various theoretical and applied studies, multivariate analysis treats multivariate normally 

distributed data (e.g., Kotz et al. [16]). There is an extensive amount of fundamental results 



2 

related to characterizations of the multivariate normal distribution. In this context, 

characterizations of multivariate normality (MN) through univariate projections play 

fundamental roles, providing relatively simple procedures to assess the assumption of MN 

regarding a random vector distribution (e.g., Shao and Zhou [30]; Cuesta-Albertos et al. [8]; 

Looney [20]). Univariate characterizations of MN play an important part in different 

applications to multivariate data based comparisons, simulations and stochastic modeling (e.g., 

Nagaraja [22]). Perhaps, mostly addressed univariate characterization of MN employs that the 

random variables 1, , pX X  are jointly normal if and only if every linear combination of them 

is a univariate normal. This property underlies many strategies of multivariate comparisons, 

stochastic modeling and testing for MN that have structures of powerful techniques developed 

in the univariate cases (e.g., Looney [20]; Zhu et al. [37]).  

An important critical result is that the MN of all subsets ( )r p<  of the normal variables 

1, , pX X  together with the normality of an infinity number of linear combinations of them do 

not insure the joint normality of these variables, when 2p >  (e.g., Hamedani [10]). This raises 

a vital concern regarding the common statistical procedures, e.g., for assessing MN of a random 

vector by examining a limited number of linear combinations of its components (e.g., Shao and 

Zhou [30]). In practice, technical reasons restrict the number of the linear combinations to be 

considered. 

The main aim of this paper is to introduce an alternative univariate projection of MN that is 

inspired by the following statements. The likelihood principle plays a prominent role in 

developing powerful statistical inference tools (e.g., Vexler and Hutson [35]). Oftentimes, 

likelihood functions assist to derive sufficient information regarding observed data. Then, one 

might ask: can a distribution of the likelihood function based on the vector ( )1, ,
T

pX X X=   

be involved in complete reconstruction of X ’s distribution? (In this context, the term 



3 

“likelihood function” is defined as the joint density function of X , say f , computed in the 

form ( )1, , pf X X .) The likelihood function based on X  is a univariate random variable. 

In the case where X  is MN distributed, the corresponding log likelihood function can be 

directly associated with so called quadratic forms (see Section 2 for details). According to 

Ruben [28], “from a substantive or statistical point of view the characterization of normality via 

quadratic forms must rank as of greater interest when one bears in mind that the core of 

statistical science, namely the entire vast area of regression analysis, including analysis of 

variance, is based on quadratic forms of the components of the observation vector.” Ruben [28] 

provided characterizations of normality, showing that, when 1, , pX X  are symmetric, 

independently and identically distributed random variables with zero means and finite 

variances, the corresponding quadratic form has a chi-squared distribution if and only if 1X  is 

normal. This approach can characterize 1, , pX X  as normally distributed random variables, 

but does not sufficiently imply that X  is MN -distributed (Hamedani [10]). Indeed, it is of 

theoretical and applied interest to release the conditions regarding independence of X ’s 

components and their symmetry. 

In Section 2, we establish a new characterization of MN for a random vector by examining 

the relevant quadratic form. The obtained results can underlie a reverse of Cochran's theorem 

(e.g., Styan [32]) that concerns the distribution of quadratic forms in normal variables. It turns 

out that, in general cases, we can provide one-to-one mapping between the likelihood’s and 

X ’s distributions, using properties of infinity divisible (ID) distribution functions. For an 

extensive review and examples related to univariate and multivariate ID distributions, we refer 

the reader to Bose et al. [4]. We point out that the problem of univariate likelihood projections 

can be linked to the issue of reconstructing summands distributions by a distribution of their 

sum. In this context, the conclusions of Prokhorov and Ushakov [24] (see Theorem 1 and its 
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Corollary in [23]) show that, even in the simple case of independent 1, , pX X , the ID 

assumption applied in Section 2 cannot be significantly improved.  

In Section 3, we exemplify an application of the proposed method, constructing simple tests 

for MN. Although many techniques for assessing MN have been proposed (e.g., Kim and Park 

[15]), there is still a paucity of genuine statistical tests for MN (e.g., Kotz et al. [16]). Taking 

into account the arguments presented by Looney [20], we demonstrate techniques for assessing 

MN based on well-known tests that use univariate observations. We experimentally show that 

the presented likelihood projection based testing strategy can exhibit high and stable power 

characteristics in comparison to the relevant well-known classical procedures in various 

scenarios when X  is not MN-distributed, whereas 1, , pX X  are dependent or independent 

normally distributed random variables (Stoyanov [31]). In such cases, the Shapiro-Wilk, Henze-

Zirklers and the Mardia multivariate normality tests may break down completely. In Section 4 

the proposed method is applied to a biomarker study associated with myocardial infarction 

disease. We conclude with remarks in Section 5. 

2. Likelihood projections 

We first introduce the basic notation regarding the statement of the problem. Then the main 

results are provided in Theorems 1 and 2 that establish univariate likelihood based 

characterizations of MN. The proofs of Theorems 1 and 2 are included for completeness and 

contain comments that assist to describe the obtained results. Important notes related to 

conditions used in the proposed technique are presented in Remarks. 

Let ( )1, ,
T

pX X X=   be the p-dimensional random vector with mean vector 

( )1, ,
T

pµ µ µ=   and covariance matrix Σ . The covariance matrix Σ  is positive-definite. Then 

we can use an orthogonal (orthonormal) matrix Q  to present the diagonalizable form of Σ , 
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TQ QΣ = Λ , where the matrix ( )1diag , , ,    0, 1,..., ,p i i pλ λ λΛ = > =  (e.g., Baldessari [1]). 

Define the following matrices 

( ) ( )1/2 1/2
1diag , , ,  ,    and   .T

p H Q Q z H Xλ λ µ− −∆ = = ∆ = −  

Obviously H  is symmetric (e.g., TH H= ) and 1 1T T T T TH H Q QQ Q Q Q Q Q− −= ∆ ∆ = Λ = Σ , 

since the equation TQ QΣ = Λ  provides TQ QΣ = Λ  after applying the inverse of both sides and 

using that the inverse of an orthogonal matrix is equal to its transpose. Also we have 

T T T T T T
pH H Q Q Q Q Q Q Q Q Q Q IΣ = ∆ Σ ∆ = ∆ Λ ∆ = , 

where pI  is the identity matrix of size p . 

Assuming that X  is observed and follows a multivariate normal distribution, say 

( )~ ,pX N µ Σ , we can write the conventional likelihood function 

( ) { }1/2/22 exp 0.5 ,pL A Wπ −= −  where 1A −= Σ  is a real symmetric positively defined matrix 

and the quadratic form ( ) ( )TW X A Xµ µ= − − . It is clear that the distribution of W  

determines the distribution of L and vice versa. Note that  

( ) ( ) ( ) ( ) ( ) ( )1 TT T T TW X X X H H X H X H X z zµ µ µ µ µ µ−= − Σ − = − − = − − =   , 

where ( )z H X µ= − . 

Theorem 1 (Likelihood Projection and Characterization). The following two statements are 

equivalent: 

(a) X  is an infinitely divisible random (ID) vector (e.g., Bose et al. [4]), the random vector 

z  consists of p independent components and the random variable Tz z W=  has the chi-

square distribution with p degrees of freedom, say 2~T
pz z χ . 

(b) ( )~ ,pX N µ Σ . 
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Proof. Under Statement (a), we have ( ) 1( ,..., )T
pz H X z zµ= − = , where iz  is a linear 

combination of 1, , pX X , 1,...,i p= . Therefore, for all { }1,...,i p∈ , iz  is an ID random 

variable (e.g., Horn and Steutel [12]: Theorem 3.2; Rao [26: p. 66]). (Note that, in this case, the 

assumption: “ X  is an ID random vector” is employed, whereas, in general, a linear 

combination of ID random variables can be not an ID random variable. Here, for example, in a 

particular case, we can regard a structure of the definition of normally distributed random 

vectors, comparing to that of normally distributed random variables, and refer to, e.g., 

Hamedani [10].) Then we apply the following result, focusing on 2 2
1

T
pz z z z= + + , where 

1,..., pz z  are independent. 

Proposition 1 (Kruglov [17]). If 1,..., pY Y  are independent ID random variables such that 

2 2
1 pY Y+ +  has the chi-square distribution with p degrees of freedom then random variables 

1,..., pY Y  have the same standard normal distribution. 

Thus, for all { }1,...,i p∈ , ( )1~ 0,1iz N . Since ( ) 1X H zµ −− = , for all { }1,...,i p∈ , 

i iX µ−  is an linear combination of independent identically ( )1 0,1N -distributed 1,..., pz z . Then, 

the simple use of a characteristic function of i iX µ−  shows that 1~i iX Nµ− , { }1,..., .i p∈  

(Note that, in this case, we use that 1,..., pz z  are independent and identically distributed, 

whereas, in general, a linear combination of normally distributed random variables can be non-

normally distributed.) Now, Propositions 1 and 2 of Wesolowski [36] assist to conclude that the 

ID random vector ( )~ ,pX N µ Σ  that is Statement (b). 

Under Statement (b), it is clear that X  is an ID random vector and we have the quadratic 

form ( ) ( ) 2~TT
pz z W X A Xµ µ χ= = − −  by virtue of Cochran’s theorem (e.g., Styan [32]). In 

this case, ( ) ( )E E 0z H X µ= − =    and ( ) ( )var var Tz H X Hµ= − T
pH H I= Σ = , and then
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( )~ 0,pz N I , since ( )~ ,pX N µ Σ . These provide Statement (a) and then we complete the 

proof. 

Remark 1. It seems that the ID requirement used in Theorem 1 can be substituted by a 

symmetric type restriction on z ’s distributions (see the Introduction of Kruglov [17] as well as 

Ruben [28]). This approach leads to characterize 1, , pX X  as normally distributed random 

variables, but cannot sufficiently assist to conclude that ( )~ ,pX N µ Σ  (Hamedani [10]). This is 

one of reasons to require that X  is an ID vector. In this case the ID restriction on z ’s 

distributions is more profound than the symmetric distributions’ considerations (Kruglov [17: p. 

873]). 

Remark 2. A set of results regarding situations when ID vectors are normally distributed can be 

found in, e.g., Wesolowski [36] and Bose et al. [4: p. 783]. Bose et al. [4] provided an extensive 

review and examples related to ID distributions. 

The following proposition can get involved into the Theorem 1 structure instead of 

Proposition 1. 

Proposition 2 (Golikova and Kruglov [7]). Let 1,..., , 2pY Y p ≥  be independent ID random 

variables. The random variable ( )22 2

1 1
/ 2i ji j

Y Y
= =

−∑ ∑  has the chi-square distribution with 1 

degree of freedom if and only if (iff) 1Y  and 2Y are Gaussian random variables with 1 2E EY Y=  

and ( ) ( )2 2
1 1 2 2E E 2Y EY Y EY− + − = . In general for 3p ≥ , if 1E E pY Y= =  and the random 

variable ( )2

1 1
/p p

i ji j
Y Y p

= =
−∑ ∑  has the chi-square distribution with 1p −  degrees of freedom 

then 1,..., pY Y  are Gaussian random variables with ( ) ( )22
1 1E E E E 1p pY Y Y Y− = = − = . 

Since ( )E 0z =  and ( )var pz I= , as an immediate modification of Theorem 1 we have: 

Theorem 2. The following two statements are equivalent: 
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(a) X  is an ID random vector, the vector z  consists of independent components and the 

random variable ( ) ( )2 2

1 1 1
/ /p p p

i j ji j j
z z p W z p

= = =
− = −∑ ∑ ∑  has the chi-square 

distribution with p-1 degrees of freedom. 

(b) ( )~ , , 2pX N pµ Σ ≥ . 

Remark 3. Theorems 1 and 2 treat independent random variables 1,..., pz z . In this context, 

assuming that ( )1,...,
T

pz z z=  is an ID random vector and 1,..., pz z  are from specific ID 

distributions with finite fourth moments, we have that 1,..., pz z  are independent if and only if 

( ) ( ) ( )2 2 2 2E E E ,i j i jz z z z i j= ≠  for all 1 ,i j p≤ ≤  (see Pierre [23], for details). That is to say, a 

natural question is when are components of an ID vector independent? In this context, Pierre 

[23] and Veeh [34] discussed necessary and sufficient conditions in a parallel with those 

available in the normal case. It turns out that if the ID vector has finite fourth moment, then 

pairwise independence is equivalent to total independence.  

Remark 4. It is clear that the problem considered in Theorems 1 and 2 can be associated with 

the issue of reconstructing a summands distribution by a distribution of their sum. Even in the 

simple case of ( )~ ,p pX N Iµ , it turns out that by virtue of the results of Prokhorov and 

Ushakov [24] (see Theorem 1 and its Corollary in [23]), the ID restriction on z ’s distributions 

cannot be significantly improved. In this context, in a general case, the condition “ 1,..., pz z  are 

independent” seems to be essential.  

3. Applications of the proposed technique to test for MN 

In this section, we exemplify simple applications of the likelihood projection technique to test 

for MN, employing available software products. The demonstrated test procedures are 

experimentally evaluated. We first consider testing strategies when the parameters of the null 
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distribution are known. The analysis is relatively clear, and has the basic ingredients for more 

general cases studied in Sections 3 and 4 when the MN parameters are estimated. 

Generally speaking, the univariate likelihood projections can yield easy ways to construct 

tests for MN, e.g., combining a test for 2~T
pz z χ  with a decision making rule for that the 

random vector z  consists of p independent components. Designs, when test strategies combine 

statistics with structures based on related paradigms, can significantly simplify the development 

of the tests for MN. For example, taking into account the schematic rule “Likelihood( 2~T
pz z χ , 

1,..., pz z  are independent) = Likelihood( 2~T
pz z χ  / 1,..., pz z  are independent)×Likelihood(

1,..., pz z  are independent)”, one can employ a sum of test statistics that are based on log-

likelihood type concepts. 

Without loss of generality, we exemplify the proposed approach via testing of bivariate 

normality. (See Remark 5 and Section 4 below for testing of trivariate normality.) To this end, 

we transform the quadratic form ( ) ( )TTz z W X A Xµ µ= = − −  via ( )J G W= , where 

( )
0

( ) exp / 2 / 2
x

G x u du= −∫  is the chi-squared distribution function with two degrees of 

freedom. Then, we can aim to test for ~ [0,1]J Unif , assessing that 2
2~W χ . In this statement, 

the smooth Neyman test for uniformity (e.g., Ledwina [18]; Rayner et al. [27]), a log-likelihood 

structured decision making mechanism, uses the statistic 

( )
1

2

1
1 1

1 nk n

n j i
j i

T b J
n = =

 =  
 

∑ ∑ , 

where values 1,..., nJ J , independent realizations of J , are assumed to be observed; 
11,..., kb b  are 

normalized Legendre polynomials on [0,1]; and 1nk  is proposed to be chosen via the data-driven 

procedure, a modified Schwarz's rule, developed by Ledwina [18] and Inglot and Ledwina [13]. 

In order to obtain values of 1nT , we can employ the R-command (R Development Core Team 
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[25]): ddst.uniform.test that is contained in the R-package ‘ddst’ (https://cran.r-

project.org/web/packages/ddst/ddst.pdf). To test for independence between 1z  and 2z , we apply 

the data-driven rank strategy proposed by Kallenberg and Ledwina [14]. The log-likelihood 

type test statistic is 

2
2

1 2
2

1 1

1/ 2 1/ 21 nk n
i i

n j j
j i

R RT b b
n n n= =

 − −    =     
    

∑ ∑ , 

where we assume that samples ( )1,...,j jnz z  related to random variables { }, 1, 2 ,jz j∈  are 

observed; jiR  denotes the rank of jiz  among ( )1,...,j jnz z , { }1,2 ;j∈  and 2nk  is chosen in the 

data-driven manner, a modified Schwarz's rule, shown in Kallenberg and Ledwina [14]. To 

implement this procedure, we can use the R-command testforDEP that is contained in the R-

package ‘testforDEP’ (Miecznikowski et al. [21]). Thus, the test statistic for bivariate normality 

has the form 1 2n n nT T T= + . The test statistic nT  is a sum of the powerful consistent test 

statistics.  

In practice, the parameters of the null distribution of the vector X are unknown. Thus, 

finally applying a common approach in assessing MN of underlying data distributions based on 

the residuals (e.g., Baringhaus and Henze [2]), we obtain the following decision making 

procedure. Let ( )1 2, ,T
i i iX X X=  { }1,...,i n∈ , be independent identically distributed bivariate 

random vectors that are realizations of ( )1 2, TX X X= , with sample mean ( )1
/n

n ii
X X n

=
=∑  

and sample covariance matrix ( )( )1
/

Tn
n i ii

S X X X X n
=

= − −∑ . Assume ( )1 2~ ,X N µ Σ  under 

the null hypothesis. Then, we can compute 1/2
nS −  that is (almost surely) the unique symmetric 

positive-definite square root of the inverse of nS  which is positive-definite with probability one 

(Eaton and Perlman [6]). Define the residuals ( ) ( )1/2
1 2, T

i i i n iz z z S X X−= = −    and the statistics 

{ }( ),  1,...,T
i i iJ G z z i n= ∈

  . The null hypothesis is rejected for large values of  

https://cran.r-project.org/web/packages/ddst/ddst.pdf
https://cran.r-project.org/web/packages/ddst/ddst.pdf
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( )
1 2

22
1 2

1 1 1 1

1/ 2 1/ 21 1n nk kn n
i i

n j i j j
j i j i

R RT b J b b
n n n n= = = =

    − −   = +      
       

∑ ∑ ∑ ∑
 

  , 

where jiR  denotes the rank of jiz  among ( ) { }1,..., , 1, 2 ,j jnz z j∈  , 1 2,n nk k  are chosen in the data-

driven manner based on observations { }, , 1,...,i iJ z i n∈

  (see the 1 2,n nT T -strategies above, 

respectively). To compute values of the test statistic nT , one can use the R code: 

library(ddst); library(testforDEP); zz<-z1^2+z2^2; J<-pchisq(zz,2); T<-ddst.uniform.test(J, 

compute.p=FALSE)$statistic+testforDEP(z1,z2,test="TS2",num.MC = 100)@TS 

 Note that Neyman smooth tests for bivariate normality have been developed by Bogdan 

[3]. The data driven smooth tests proposed by Bogdan [3] have complicated structures that are 

difficult to generalize beyond the bivariate case. (Critical issues related to Bogdan’s tests for 

bivariate normality are shown in Ducharme and Micheaux [9].) The likelihood projection based 

approach provides a simple method for testing MN. In the first stage of our development, it is 

assumed that the null distribution parameters are known. Then the parameters are replaced by 

their estimates. The proposed framework can be easily extended to higher dimension cases (see 

Remark 5 and Section 4 below for examples). 

3.1. Null distribution 

According to Szkutnik [33], the null distribution of the residuals based test statistic nT  does not 

depend on the parameters ( ),µ Σ  under the null hypothesis (see also, e.g., Baringhaus and 

Henze [2]). However Henze [11] provided concerns regarding this fact. We then present the 

critical values for the present test for different sample sizes using the Monte Carlo technique, 

and experimentally examine this result for different values of ( )1 2corr , ,i iX Xρ =  { }1,...,i n∈ . 

In order to tabulate the percentiles of the null distribution of the test statistic nT , we drew 

55,000 samples of 1 ,..., nX X ~ 2

0 1 0.5
,

0 0.5 1
N

 −    
    −    

 calculating values of nT  at each sample 
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size n. The generated values of the test statistic nT  were used to determine the critical values αC  

of the null distribution of nT  at the significance levels α . The results of this Monte Carlo study 

are displayed in Table 1.  

 

Table 1. Critical values of the proposed test statistic nT  defined in Section 3.  

 α   α  

n 0.2 0.1 0.05 0.01 n 0.2 0.1 0.05 0.01 

25 0.9759 5.5513 9.3079 18.6332 60 0.6805 1.5788 6.7011 15.2855 

30 0.8577 5.2503 9.1045 18.3795 80 0.6284 1.1314 5.9050 14.2164 

35 0.8017 4.8672 8.3672 16.9611 90 0.6225 1.0960 5.9588 14.8072 

45 0.7256 4.4877 7.7548 16.6368 100 0.6192 1.0682 5.8645 13.7717 

50 0.7069 4.2035 7.1607 16.2087 125 0.6014 0.9961 5.5347 13.2184 

 

In order to verify the results shown in Table 1, for different values of ( )1 1,ρ ∈ −  and n , we 

calculated the Monte Carlo approximations to 

( ) { }0 05 1 2 2

0 1
Pr 1

0 1
T

n . i iT C | X , X ~ N , ,i ,...,n ,
ρ

ρ
      > ∈      

      
  

where 0 05.Cα= ’s are shown in Table 1. In this study, we also examined the Shapiro-Wilk test 

(SW), using the R-procedure “mvShapiro.Test”. For each value of ρ  and n , the Type I error 

rates were derived using 75,000 samples of ( ) { }1 2 2

0 1
1

0 1
T

i iX , X ~ N , ,i ,...,n
ρ

ρ
    

∈    
    

. Table 

2 presents the results of this Monte Carlo evaluation. 

 

Table 2. The Monte Carlo Type I error probabilities of the proposed test, nT , and the Shapiro-

Wilk test (SW), when ( ) { }1 2 2

0 1
1

0 1
T

i iX , X ~ N , ,i ,...,n
ρ

ρ
    

∈    
    

 and the anticipated 

significance level is 0 05.α = . 



13 

 35n =  50n =  100n =  
ρ  

nT  SW 
nT  SW 

nT  SW 

-0.9 0.0505 0.0511 0.0499 0.0501 0.0499 0.0492 

-0.7 0.0501 0.0515 0.0498 0.0513 0.0500 0.0497 

-0.5 0.0498 0.0507 0.0500 0.0483 0.0500 0.0488 

-0.3 0.0501 0.0501 0.0499 0.0489 0.0501 0.0505 

-0.1 0.0506 0.0507 0.0495 0.0496 0.0496 0.0491 

0 0.0510 0.0512 0.0501 0.0512 0.0500 0.0498 

0.1 0.0495 0.0514 0.0502 0.0505 0.0499 0.0500 

0.3 0.0500 0.0494 0.0498 0.0493 0.0500 0.0513 

0.5 0.0510 0.0510 0.0499 0.0504 0.0499 0.0489 

0.7 0.0495 0.0505 0.0507 0.0503 0.0499 0.0482 

0.9 0.0497 0.0506 0.0498 0.0488 0.0500 0.0486 

 

According to Table 2, the validity of the critical values related to the test statistic nT  is 

experimentally confirmed 

3.2. Power 

In general, in the considered goodness-of-fit framework, there are no most powerful decision 

making mechanisms. We examine the proposed approach in several scenarios, where decisions 

to reject MN can be anticipated to be difficult. Taking into account that “As recommended by 

many authors …, a reasonable first step in assessing MVN is to test each variable separately for 

the univariate normality” (Looney [20]), we consider the designs displayed in Table 3, where 

1X  and 2X  are normally distributed, whereas 1 2( , )TX X X=  is not 2N -distributed.  

 

Table 3. Distributions for ( )1 2, TX X X= used in the power study 

Alternative 
Designs 

    Models/Descriptions 
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A1 ( ) ( )1 1 2 2 1 2 1,  | | 0 | | 0X X I Iξ ξ ξ ξ ξ= = ≥ − < , where ( ).I  is the indicator function and 

1 2,ξ ξ  are independent random variables: 1 1~ (0,1)Nξ , 2 1~ (0,1)Nξ  (Stoyanov [31]: p. 

88) 

A2 X  is from the two dimensional density function 

( ) ( )( ){ }1 2 1 2 1 2, ( ) ( ) 1 2 ( ) 1 2 ( ) 1f x x x x x xϕ ϕ ε= + Φ − Φ −  with ( ) ( )
x

x u duϕ
−∞

Φ = ∫  and 

0.999ε = (Stoyanov [31]: p. 89). 

A3 ( ) ( ){ } ( ){ } ( )1/22 2 2 2
1 2 1 1 2 2 1 2, exp 2 / 2 / 1 0f x x x x x x I x xρ ρ π ρ−= − − + − ≥ , 0.9ρ =  

(Stoyanov [31]: p. 89). 

A4 ( ) ( ) ( )1 2 1 1 2 2 1 2, , / 2 , / 2f x x x x x xϕ ϕ= + , where ( )1 1 2,x xϕ  and ( )2 1 2,x xϕ  are standard 

bivariate normal densities with correlation coefficients 1 0.5ρ = −  and 2 0.5ρ = , 

respectively. In this case, 1X  and 2X  are uncorrelated (Stoyanov [31]: p. 93). 

A5 ( ) ( ){ } ( ){ } ( )2 2 2 2 1/2
1 2 1 1 2 2 1 1 2 2, exp 2 / 3 exp 2 / 3 / 2 3f x x x x x x x x x x π = − + + + − − +  . In 

this case, 1X  and 2X  are uncorrelated, but dependent (Stoyanov [31]: p. 93). 

A6 ( ) ( )( ){ }2 2
1 2 1 2, exp 1 1 /f x x x x C= − + + , where 0.993795C  . In this case, all the 

conditional distributions of X  are normal (Stoyanov [31]: p. 97). 

A7 ( ) ( )( )1/2 1/21/2 1/2
1 2 3 21 ,  1

T
X ξ η ξ η ξ η ξ η= + − + − , where ~ [0,1]Unifξ  and 1 2 3, ,η η η  are 

independent 1(0,1)N  distributed random variables (Stoyanov [31]: p. 97-98). 

 

Table 4 shows the results of the power evaluations of the present test nT , the SW test,  

Henze-Zirklers’s MN test (HZ) and the classical Mardia’s MN test (M) via the Monte Carlo 

study based on 55,000 replications of the independent identically distributed bivariate random 
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vectors 1 ,..., nX X  for designs A1-A7 at each sample size n . To implement the HZ test 

(Baringhaus and Henze [2]), we used the R-procedure mvn(X,mvnTest="hz") from the package 

MVN. The R- command mardia(X,plot=FALSE) was employed to conduct the M test. The 

significance level of the tests was fixed at 5%. 

 

Table 4. The Monte Carlo power of the tests. 

 Design A1  Design A2 

Tests/n 25 50 100 125  25 50 100 125 

nT  0.194 0.639 0.979 0.998  0.057 0.062 0.096 0.120 

HZ 0.171 0.446 0.946 0.991  0.049 0.056 0.064 0.071 

M 0.065 0.134 0.209 0.236  0.021 0.046 0.069 0.076 

SW 0.175 0.304 0.558 0.676  0.056 0.057 0.058 0.061 

 Design A3  Design A4 

nT  0.201 0.501 0.875 0.945  0.075 0.144 0.335 0.434 

HZ 0.141 0.376 0.778 0.888  0.065 0.078 0.101 0.114 

M 0.054 0.306 0.684 0.796  0.054 0.119 0.201 0.236 

SW 0.036 0.049 0.096 0.131  0.044 0.045 0.045 0.047 

 Design A5  Design A6 

nT  0.073 0.145 0.337 0.444  0.153 0.401 0.840 0.921 

HZ 0.067 0.077 0.102 0.109  0.092 0.205 0.458 0.571 

M 0.053 0.117 0.201 0.237  0.037 0.182 0.452 0.548 

SW 0.043 0.041 0.046 0.045  0.048 0.053 0.062 0.066 

 Design A7  

Tests/n 25 50 100 125   
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nT  0.0730 0.123 0.243 0.304  

HZ 0.073 0.097 0.159 0.193  

M 0.051 0.110 0.187 0.218  

SW 0.054 0.058 0.066 0.067   

 

This study demonstrates that the likelihood projection based test is significantly superior to 

the considered classical tests in all scenarios A1-A7. Specifically, the presented test clearly 

outperforms the classical tests in terms of the power properties when detecting MN based on 

vectors with uncorrelated 1(0,1)N -distributed components. It seems that the SW test is biased 

under A3 (n=25, 50), A4, A5 and A6 (n=25) and inconsistent under design A5. The M test is 

biased under A2 (n=25, 50). 

Based on the Monte Carlo results, we conclude that the proposed test exhibits high and 

stable power characteristics in comparison to the well-known classical procedures.  

Remark 5. Assume, for example, we observe trivariate independent identically distributed 

vectors ( )1 2 2, , ,T
i i i iX X X X=  { }1,...,i n∈  that are realizations of ( )1 2 3, , TX X X X= . In a 

similar manner to the bivariate case considered above, we may define the residuals 

( )1 2 3, , T
i i i iz z z z=    . By Remark 3, in order to test for 3~X N , we can construct the test statistic 

( )
1

22

1 1 ( , ) (1,2),(1,3),(2,3) 1 1

1/ 2 1/ 21  /
n srnk kn n

si ri
n j i j j

j i s r j i

R RT b J b b n
n n n= = = = =

    − −   = +      
       

∑ ∑ ∑ ∑ ∑
 

 

, 

where ( ),T
i i iJ G z z=


   jiR


 is the rank of jiz  among ( ) { }1,..., , 1, 2,3 ,j jnz z j∈   1 ,n srnk k  are chosen 

in the data-driven manner based on observations , , 1,...,i iJ z i n=


 . For example, for 250n = , 

using 55,000 replications of 1 ,..., nX X , we computed the critical value 7.0513Cα =  of the null 

distribution of nT


 at the significance level 0.05α = . The corresponding Monte Carlo powers of 
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the nT


-based test and the HZ, M, SW tests were obtained as 0.485 and 0.239, 0.227, 0.069, 

respectively, when ( ) ( ) ( )( )1/2 1/2 1/21/2 1/2 1/2
1 2 3 2 4 51 ,  1 ,  1

T
X ξ η ξ η ξ η ξ η ξ η ξ η= + − + − + − , where 

~ [0,1]Unifξ  and { },  1,...,5j jη ∈  are independent 1(0,1)N -distributed random variables. In this 

design, 1 2,X X  and 3X  are 1(0,1)N -distributed, 3X , conditionally on 1 2,X X , has a normal 

distribution 1(0,1)N , however X  cannot have a trivariate normal distribution (Stoyanov [31]: p. 

97-98). Note also that in the Monte Carlo experiments based on generations of 

( )1 2, ,..., ,
T

i i i i pX X X X=  { } { }1,..., 250 , 5,7 ,i n p∈ = ∈  we obtained 0.05 11.655C =  and 

0.05 12.910C =  related to the test statistic  

( )
1

22

1 1 ( , ) 1 1

1/ 2 1/ 21  /
n srn

p

k kn n
si ri

n j i j j
j i s r Q j i

R RT b J b b n
n n n= = ∈ = =

    − −   = +      
       

∑ ∑ ∑ ∑ ∑
 

 

 

with { }5 (1, 2), (1,3), (1, 4), (1,5), (2,3), (2, 4), (2,5), (3, 4), (3,5), (4,5)pQ = =  and 

{7 (1, 2),..., (1,7),pQ = =  }(2,3),..., (2,7), (3, 4),..., (3,7), (4,5), (4,6), (4,7), (5,6), (5,7), (6,7) , 

respectively. In these cases, under the alternatives 

( ) ( ) ( )( 1/2 1/2 1/21/2 1/2 1/2
1 2 3 2 4 51 ,  1 ,  1 ,X ξ η ξ η ξ η ξ η ξ η ξ η= + − + − + −

( ) ( ) ) ( ) ( )(
( ) ( ) ( ) ( )

1/2 1/2 1/2 1/21/2 1/2 1/2 1/2
6 5 7 8 1 2 3 2

1/2 1/2 1/2 1/21/2 1/2 1/2 1/2
4 5 6 5 7 8 9 7

1 , 1 and 1 ,  1 ,  

1 , 1 , 1 , 1

T
Xξ η ξ η ξ η ξ η ξ η ξ η ξ η ξ η

ξ η ξ η ξ η ξ η ξ η ξ η ξ η ξ η

+ − + − = + − + −

+ − + − + − + −

( ) )1/21/2
10 111 ,

T
ξ η ξ η+ −  where ~ [0,1]Unifξ  and { }1~ (0,1), 1,...,11j N jη ∈  are independent 

random variables, the Monte Carlo powers of the nT


-based test and the HZ, M, SW  tests 

defined in Section 3.2 were obtained as 0.315, 0.119, 0.158,0.068, for 5p = , and 0.271, 

0.085,0.126,0.060, for 7p = . Then, in these cases, the proposed test demonstrated robust 

power characteristics with respect to the values of p .  



18 

Remark 6. It was observed that the developed test based on nT  showed good power levels in 

different scenarios that are relatively simple in comparison to those shown in Table 3. For 

example, considering the regression type model: ( )1 2, ,TX X X=  1 ~ [ 10,10],X Unifη= −  

2 1X X ξ= + , 1~ (0,1)Nξ , the Monte Carlo powers of the nT -based test and the HZ, M, SW 

tests were computed as 0.320, 0.317, 0.151,0.041, when 50n = . 

4. Real Data Based Example 

Myocardial infarction (MI) is commonly caused by blood clots blocking the blood flow of the 

heart leading heart muscle injury. The heart disease is leading cause of death affecting about or 

higher than 20% of populations regardless of different ethnicities according to the Centers for 

Disease Control and Prevention (e.g., Schisterman et al. [29]). 

We illustrate the application of the proposed approach based on a sample from a study that 

evaluates biomarkers associated with MI. The study was focused on the residents of Erie and 

Niagara counties, 35-79 years of age. The New York State department of Motor Vehicles 

drivers’ license rolls was used as the sampling frame for adults between the age of 35 and 65 

years, while the elderly sample (age 65-79) was randomly chosen from the Health Care 

Financing Administration database. The biomarkers called “thiobarbituric acid-reactive 

substances" (TBARS), “vitamin E” and ”glucose” are often used as discriminant factors 

between individuals with (MI=1) and without (MI=0) myocardial infarction disease (e.g., 

Schisterman et al. [29]). The sample of 50 biomarkers values was collected on cases who 

survived on MI. 

Oftentimes, measurements related to biological processes follow a log-normal distribution 

(e.g., Limpert et al. [19]). The aim of this study is to investigate the joint distribution of log-

transformed TBARS measurements, say 1X , log-transformed vitamin E measurements, say 2X , 
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and log-transformed glucose measurements, say 3X , when MI=1. Figure 1 depicts the 

histograms based on values of 1X , 2X and 3X . 

 

Fig. 1. Data based histograms related to observed values of log-transformed TBARS 

measurements, log-transformed vitamin E measurements and log-transformed glucose 

measurements. 

 

We implemented the new test nT


 (see Remark 5) and the classical HZ, M, SW tests (see Section 

3 for their descriptions). In this study, the considered four tests significantly reject the 

hypotheses that ( )1 2 3
TX ,X ,X  is trivariate normally distributed ( 0H ). Then, we organized a 

Bootstrap/Jackknife type study to examine the power performances of the test-statistics. The 

conducted strategy was that a sample with size 35n =  was randomly selected from the data to 

be tested for trivariate normality at 5% level of significance. We repeated this strategy 25,000 

times calculating the frequencies of the events { nT


 rejects 0H }, {HZ rejects 0H }, {M rejects 

0H } and {SW rejects 0H }. The obtained experimental powers of the four tests are 0.55, 0.29, 
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0.28, 0.40, respectively. In this study, the presented test outperforms the classical procedures in 

terms of the power properties when detecting that the log-transformed biomarkers’ values are 

not jointly distributed as normal random variables. That is, the proposed test can be expected to 

be more sensitive as compared with the known methods to rejecting the null hypothesis of MN 

regarding the joint distribution of the log-transformed values of the biomarkers. 

5. Concluding Remarks 

This paper established new univariate likelihood based projections of the MN distribution. It 

can be attractive to release the conditions used in the presented theorems as well as extend and 

methodize the likelihood based concept to characterize different multivariate distributions (e.g., 

Costa and Hero [5]). 

Using the likelihood based characterization of MN, we demonstrated an example of 

developing a new approach for testing of MN. The displayed procedure is simple and can be 

easily applied in practice, since reliable software products for performing modules of the 

likelihood projections based tests for MN are available. Through extensive Monte Carlo 

simulation studies and a real data based example, we showed that, employing the well-known 

tests based on univariate observations, we developed the strategy to assess MN that is superior 

to the classical procedures across a variety of settings when non-MN distributed vectors consist 

of normal variables. In future studies, many types of corresponding univariate-based plots can 

be constructed to be both easy to make and simple to use for detecting departures from assumed 

multivariate distributions. It is hoped that the present paper will convince the readers of the 

usefulness of multivariate distributions’ characterizations via relevant likelihood functions. 
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